Seismic Wave Propagation in a Self-Gravitating Anisotropic Earth

  • K. N. Sawyers
  • R. S. Rivlin


The mathematical theory is discussed of the propagation of acceleration waves in a spherical, elastic Earth, which has spherical symmetry and the material of which is transversely isotropic at each point with respect to the radial direction, both as a result of its intrinsic nature and as a result of the effect of self-gravitation. An arbitrary variation of density with radial distance from the Earth’s centre is assumed. The differential equation for the ray path is obtained and solved in the case of an SH-wave. It is seen that the usual Herglotz-Wiechert method for the determination of the dependence of wave speed on radial position breaks down.


Transverse Wave Radial Direction Wave Front Seismic Wave Wave Speed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adkins, J. E. 1955 Proc. Roy. Soc. A 229, 119.CrossRefGoogle Scholar
  2. Anderson, D. L. 1961 J. Geophys. Res. 66, 2953.CrossRefGoogle Scholar
  3. Backus, G. E. 1962 J. Geophys. Res. 67, 4427.CrossRefGoogle Scholar
  4. Bland, D. R. 1965 J. Inst. Maths. Applies. 2, 327.CrossRefGoogle Scholar
  5. Bullen, K. E. 1963 An introduction to the theory of seismology. Cambridge University Press.Google Scholar
  6. Ericksen, J. L. & Rivlin, R. S. 1954 J. Rat. Mech. Anal. 3, 281.Google Scholar
  7. Green, A. E. 1963 J. Mech. Phys. Solids. 11, 119.CrossRefGoogle Scholar
  8. Hayes, M. & Rivlin, R. S. 1961 Arch. Rational Mech. Anal. 8, 15.CrossRefGoogle Scholar
  9. Helbig, K. 1966 Bull. Seismological Soc. Am. 56, 527.Google Scholar
  10. Nuttli, O. 1963 Rev. Geophys. 1, 351.CrossRefGoogle Scholar
  11. Stoneley, R. 1949 Mon. Not. Roy. Astr. Soc., Geophys. Suppl. 5, 343.CrossRefGoogle Scholar
  12. Truesdell, C. 1961 Arch. Rational Mech. Anal. 8, 263.CrossRefGoogle Scholar
  13. Truesdell, C. & Toupin, R. 1960 The classical field theories. In Encyclopedia of Physics, vol. III/1 (ed. by S. Flügge). Berlin: Springer.Google Scholar
  14. Varley, E. 1965 J. Rat. Mech. Anal. 20, 309.Google Scholar
  15. Varley, E. & Cumberbatch, J. 1965 J. Inst. Maths. Applies. 1, 101.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • K. N. Sawyers
    • 1
  • R. S. Rivlin
    • 2
  1. 1.Stanford Research InstituteMenlo ParkUSA
  2. 2.Center for the Application of MathematicsLehigh UniversityUSA

Personalised recommendations