Flow of a Viscoelastic Fluid Between Eccentric Rotating Cylinders

  • B. Y. Ballal
  • R. S. Rivlin

Synopsis

The flow of a viscoelastic fluid in the annular region between two infinite, eccentrically-mounted, rotating cylinders is analyzed. The flow is assumed to be sufficiently slow, so that the second-order Rivlin-Ericksen constitutive equation is applicable and so that inertial effects may be neglected. The resultant forces on the cylinders, as well as the distribution of their normal and tangential components, are calculated. No restrictions are placed on the ratio of the radii or on the distance between the cylinder axes.

Keywords

Cylin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. E. Zhukowski, Commun. Math. Soc. Kharkov, 17, 31 (1887).Google Scholar
  2. 2.
    G. B. Jeffrey, Proc. Roy. Soc. London, A101, 169 (1922).CrossRefGoogle Scholar
  3. 3.
    G. Duffing, Z. Angew. Math. Mech., 4, 297 (1924).Google Scholar
  4. 4.
    H. Reissner, Z. Angew. Math. Mech., 15, 81 (1935).CrossRefGoogle Scholar
  5. 5.
    W. Müller, Ing. Arch., 13, 37 (1942).CrossRefGoogle Scholar
  6. 6.
    W. Müller, Ann. Phys., 41, 335 (1942).CrossRefGoogle Scholar
  7. 7.
    W. Müller, Z. Angew. Math. Mech., 22,177 (1942).CrossRefGoogle Scholar
  8. 8.
    G. Wannier, Quart. Appl. Math., 8, 1 (1950).Google Scholar
  9. 9.
    B. Y. Ballal and R. S. Rivlin, in press.Google Scholar
  10. 10.
    R. I. Tanner, Phys. Fluide, 9, 1246 (1966).CrossRefGoogle Scholar
  11. 11.
    H. Giesekus, Rheol. Acta, 3, 59 (1963).CrossRefGoogle Scholar
  12. 12.
    G. J. Fix and P. R. Paslay, J. Appl. Mech., 34, 579 (1967).CrossRefGoogle Scholar
  13. 13.
    M. Reiner, M. Hannin, and A. Harnoy, 1sr. J. Technol., 7, 273 (1969).Google Scholar
  14. 14.
    M. J. Davies and K. Walters, Symposium on Rheology of Lubricants, Nottingham, 65 (1972).Google Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • B. Y. Ballal
    • 1
  • R. S. Rivlin
    • 1
  1. 1.Center for the Application of MathematicsLehigh UniversityBethlehemUSA

Personalised recommendations