Posttranslational Modifications and Conformational Changes of PrPSc and Their Relationship to Infectivity

  • Richard Rubenstein
  • Richard J. Kascsak
  • Carol L. Scalici
  • Regina Fersko
  • Adrienne A. Rubenstein
  • Michael C. Papini
  • Richard I. Carp
Part of the Serono Symposia USA Norwell, Massachusetts book series (SERONOSYMP)

Abstract

PrPSc is a specific protein marker for slow infectious diseases known as the transmissible subacute spongiform encephalopathies (TSSE). Although PrPSc is closely associated with infectivity, it is not known if it is the infectious agent itself, a component of the agent, or merely adventitiously associated with infectivity. In the present study, proteinase K treatment or electrophoretic analysis of partially denatured PrPSc preparations reveals a dissociation between infectivity and demonstrable PrPSc. We demonstrate that the resistance of PrPSc to partial denaturation and of infectivity to inactivation differs markedly for two scrapie strains. The 139A mouse scrapie strain was more susceptible to inactivation compared with the 263K hamster scrapie strain. Our findings support other evidence that not all PrPSc is required for infectivity.

Keywords

Sugar Crystallization Migration Fluoride Electrophoresis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carp RI, Kascsak RJ, Rubenstein R. Pathogenesis of unconventional slow virus infections. In: Liberski PP, ed. Light and electron microscopic neuropathology of slow virus disorders. Boca Raton, FL: CRC Press, 1993:33–61.Google Scholar
  2. 2.
    Gabizon R, McKinley MP, Prusiner SB. Purified prion proteins and scrapie infectivity copartition into lysosomes. Proc Natl Acad Sci USA 1987;84: 4017–4021.PubMedCrossRefGoogle Scholar
  3. 3.
    Hilmert H, Diringer H. A rapid and efficient method to enrich SAF-protein from scrapie brains of hamsters. Biosci Rep 1984;4:165–170.PubMedCrossRefGoogle Scholar
  4. 4.
    Prusiner SB, Bolton DC, Groth DF, Bowman KA, Cochran SP, McKinley MP. Further purification and characterization of scrapie prions. Biochemistry 1982; 21:6942–6950.PubMedCrossRefGoogle Scholar
  5. 5.
    Hope J, Manson J. The scrapie fibril protein and its cellular isoform. In: Chesebro BW, ed. Current topics in microbiology and immunology—transmissible spongiform encephalopathies. Berlin: Springer-Verlag, 1991;172:57–74.Google Scholar
  6. 6.
    Carp RI, Kascsak RJ, Rubenstein R, Merz PA. The puzzle of PrPSc and infectivity—do the pieces fit? TINS 1994;17:148–149.PubMedGoogle Scholar
  7. 7.
    Bueler H, Aguzzi A, Sailer A, Greiner RA, Autenried P, Aguet M, Weissman C. Mice devoid of PrP are resistant to scrapie. Cell 1993;73:1339–1347.PubMedCrossRefGoogle Scholar
  8. 8.
    Chesebro B, Caughey B. Scrapie agent replication without the prion protein? Curr Biol 1993;3:696–698.PubMedCrossRefGoogle Scholar
  9. 9.
    McKinley MP, Bolton DC, Prusiner SB. A protease-resistant protein is a structural component of the scrapie prion. Cell 1983;35:57–62.PubMedCrossRefGoogle Scholar
  10. 10.
    Brown P, Liberski PP, Wolff A, Gajdusek DC. Conservation of infectivity in purified fibrillary extracts of scrapie-infected hamster brain after sequential enzymatic digestion or Polyacrylamide gel electrophoresis. Proc Natl Acad Sci USA 1990;87:7240–7244.PubMedCrossRefGoogle Scholar
  11. 11.
    Braig HR, Diringer H. Scrapie: concept of a virus-induced amyloidosis in brain. EMBO J 1985;4:2309–2312.PubMedGoogle Scholar
  12. 12.
    Xi YG, Ingrosso L, Ladogana A, Masullo C, Pocchiari M. Amphotericin B treatment dissociates in vivo replication of the scrapie agent from PrP accumulation. Nature 1992;356:598–601.PubMedCrossRefGoogle Scholar
  13. 13.
    Carp RI, Callahan SM. In vitro interaction of scrapie agent and mouse peritoneal macrophages. Intervirology 1981;16:8–13.PubMedCrossRefGoogle Scholar
  14. 14.
    Carp RI, Kim YS, Callahan SM. Pancreatic lesions and hypoglycemia-hyperinsulinemia in scrapie-infected hamsters. J Infect Dis 1990;161:462–466.PubMedCrossRefGoogle Scholar
  15. 15.
    Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970;227:680–685.PubMedCrossRefGoogle Scholar
  16. 16.
    Kascsak RJ, Rubenstein R, Merz PA, et al. Immunological comparison of scrapie associated fibrils isolated from animals infected with four different scrapie strains. J Virol 1986;59:676–683.PubMedGoogle Scholar
  17. 17.
    Kascsak RJ, Tonna-DeMasi M, Fersko R, Rubenstein R, Carp RI, Powers JM. The role of antibodies to PrP in the diagnosis of transmissible spongiform encephalopathies. Dev Biol Stand, Basel: Karger, 1993;80:141–151.Google Scholar
  18. 18.
    Nakamura Y, Horii Y, Nishino T, et al. Immunohistochemical localization of advanced glycosylation end products (AGEs) in coronary atheroma and cardiac tissue in diabetes mellitus. Am J Pathol 1994;143:1649–1656.Google Scholar
  19. 19.
    Sidman RL, Angevine JB Jr, Pierce E. Atlas of the mouse brain and spinal cord. Cambridge, MA: Harvard University Press, 1971.Google Scholar
  20. 20.
    Prusiner SB. Molecular biology of prion diseases. Science 1991;252:1515–1522.PubMedCrossRefGoogle Scholar
  21. 21.
    Prusiner SB, Groth DF, Cochran P, Masraiz FR, McKinley MP, Martinez HM. Molecular properties, partial purification and bioassay by incubation period measurements of the hamster agent. Biochemistry 1980;19:4883–4891.PubMedCrossRefGoogle Scholar
  22. 22.
    Kascsak RJ, Rubenstein R, Carp RI. Evidence for biological and structural diversity among scrapie strains. In: Chesebro BW, ed. Current topics in microbiology and immunology—transmissible spongiform encephalopathies. Berlin: Springer-Verlag, 1991;172:139–152.Google Scholar
  23. 23.
    Bessen RA, Marsh RF. Biochemical and physical properties of the prion protein from two strains of the transmissible mink encephalopathy agent. J Virol 1992;66:2096–2101.PubMedGoogle Scholar
  24. 24.
    Manuelidis L, Sklaviadis T, Manuelidis EE. Evidence suggesting that PrP is not the infectious agent in Creutzfeldt-Jakob disease. EMBO J 1987;6:341–347.PubMedGoogle Scholar
  25. 25.
    Glenner GG. Amyloid deposits and amyloidosis. N Engl J Med 1990;302: 1283–1343.CrossRefGoogle Scholar
  26. 26.
    Glenner GG, Murphy MA. Amyloidosis of the nervous system. J Neurol Sci 1989;94:1–28.PubMedCrossRefGoogle Scholar
  27. 27.
    Kitamoto T, Tateishi J, Tashima T. Amyloid plaques in Creutzfeldt-Jakob disease stain with prion protein antibodies. Ann Neurol 1986;20:204–208.PubMedCrossRefGoogle Scholar
  28. 28.
    Bucala R, Vlassara H, Cerami A. Measurement of advanced glycosylation end products. In: Harding J, James J, Crabbe C, eds. Post translational modifications of proteins. Boca Raton: CRC Press, 1992:53–79.Google Scholar
  29. 29.
    Bucala R, Cerami A. Advanced glycosylation: chemistry, biology and implications for rabbits and aging. Adv Pharmacol 1992;23:1–34.PubMedCrossRefGoogle Scholar
  30. 30.
    Vitek MP, Bhattacharya K, Glendening JM, et al. Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc Natl Acad Sci USA 1994;91:4766–4779.PubMedCrossRefGoogle Scholar
  31. 31.
    Jarrett JT, Lansbury PT Jr. Seeding “one dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer disease and scrapie. Cell 1993;73:1055–1058.PubMedCrossRefGoogle Scholar
  32. 32.
    Come JH, Fraser PE, Lansbury PT Jr. A kinetic model for amyloid formation in the prion diseases: importance of seeding. Proc Natl Acad Sci USA 1993;90:5959–5963.PubMedCrossRefGoogle Scholar
  33. 33.
    Kocisko DA, Come JH, Priola SA, et al. Cell-free formation of protease-resistant prion protein. Nature 1994;370:471–473.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1996

Authors and Affiliations

  • Richard Rubenstein
  • Richard J. Kascsak
  • Carol L. Scalici
  • Regina Fersko
  • Adrienne A. Rubenstein
  • Michael C. Papini
  • Richard I. Carp

There are no affiliations available

Personalised recommendations