Advertisement

Nonparametric Estimation of Global Functionals of Conditional Quantiles

  • Probal Chaudhuri
  • Kjell Doksum
  • Alexander Samarov
Part of the Lecture Notes in Statistics book series (LNS, volume 109)

Abstract

For fixed α ∈ (0,1), the quantile regression function gives the αth quantile θ α (x) in the conditional distribution of a response variable Y given the value X = x of a vector of covariates. It can be used to measure the effect of covariates not only in the center of a population, but also in the upper and lower tails. When there are many covariates, the curse of dimensionality makes accurate estimation of the quantile regression function difficult. A functional that escapes this curse, at least asymptotically, and summarizes key features of the quantile specific relationship between X and Y is the vector β α of weighted expected values of the vector of partial derivatives of the quantile function θ α(x). In a nonparametric setting, β α can be regarded as the vector of quantile specific nonparametric regression coefficients while in semiparametric transformation and single index models, β α gives the direction of the parameter vector in the parametric part of the model. We show that, under suitable regularity conditions, the estimate of β α obtained by using the locally polynomial quantile estimate of Chaudhuri (1991a), is \(\sqrt n\) consistent and asymptotically normal with asymptotic variance equal to the variance of the influence function of the functional β α. We discuss how the estimates of β α can be used for model diagnostics and in the construction of a link function estimates in general single index models.

Key words and phrases

Average derivative estimate transformation model projection pursuit model index model heteroscedasticity reduction of dimensionality quantile specific regression coefficients 

AMS 1991 subject classifications

Primary 62J02 secondary 62G99. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bailar, B.A. (1991): Salary survey of U.S. colleges and universities offering degrees in statistics. Amstat News 182 3.Google Scholar
  2. [2]
    Bhattacharya, P. and Gangopadhyay, A. (1990): Kernel and nearestneighbor estimation of a conditional quantile. Ann. Statist. 18 1400–1415.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Bickel, P.J. (1978): Using residuals robustly I: Tests for heteroscedasticity, nonlinearity. Ann. Statist. 6 266–291.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Bickel, P.J. and Doksum, K.A. (1981): An analysis of transformation revisited. J. Amer. Statist. Assoc. 76 296–311.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Bickel, P.J., Klaassen, C., Ritov, Y. and Wellner, J. (1994): Efficient and Adaptive Estimation for Semiparametric Models. John Hopkins Univ. Press, Baltimore.Google Scholar
  6. [6]
    Box, G.E.P. and Cox, D.R. (1964): An analysis of transformations. J. Roy. Statist Soc. B 26 211–252.MathSciNetzbMATHGoogle Scholar
  7. [7]
    Carroll, R.J. and Ruppert, D. (1988): Transformation and Weighting in Regression. Chapman & Hall, New York.zbMATHGoogle Scholar
  8. [8]
    Chaudhuri, P. (1991a): Nonparametric estimates of regression quantiles and their local Bahadur representation. Ann. Statist. 19 760–777.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Chaudhuri, P. (1991b): Global nonparametric estimation of conditional quantile functions and their derivatives. J. Multivariate Analysis 39 246–269.CrossRefzbMATHGoogle Scholar
  10. [10]
    Chaudhuri, P., Doksum, K. and Samarov, A. (1994): Nonparametric estimation of global funtionals based on quantile regression. Submitted to Ann. Statist..Google Scholar
  11. [11]
    Cuzick, J. (1988): Rank regression. Ann. Statist. 16 1369–1389.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    Dabrowska, D. (1992): Nonparametric quantile regression with censored data. Sankhya A 54.Google Scholar
  13. [13]
    Dabrowska, D. and Doksum, K. (1987): Estimates and confidence intervals for median and mean life in the proportional hazard model. Biometrika 74 799–807.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Doksum, K. (1987): An extension of partial likelihood methods for proportional hazard models to general transformation models. Ann. Statist. 15 325–345.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    Doksum, K. and Gasko, M. (1990): On a correspondence between models in binary regression analysis and in survival analysis. International Statistical Review 58 243–252.CrossRefzbMATHGoogle Scholar
  16. [16]
    Doksum, K. and Samarov, A. (1994): Nonparametric estimation of global functionals and a measure of the explanatory power of covariates in regression. Ann. Statist., to appear.Google Scholar
  17. [17]
    Duan, N. and Ye, J. (1994): Nonparametric \(\sqrt n\) Consistent Estimation for the General Transformation Models. Tech. Report #138, Grad. School of Bus., Univ. of Chicago.Google Scholar
  18. [18]
    Efron, B. (1991): Regression percentiles using asymmetric square error loss. Statistica Sinica 1 93–125.MathSciNetzbMATHGoogle Scholar
  19. [19]
    Friedman, J. and Tukey, J. (1974): A projection pursuit algorithm for exploratory data anlysis. IEEE Transactions on Computers C-23 881–889.CrossRefGoogle Scholar
  20. [20]
    Han, A. (1987): A non-parametric analysis of transformations. J. of Econometrics 35 191–209.CrossRefzbMATHGoogle Scholar
  21. [21]
    Hardie, W., Hall, P. and Ichimura, H.: Optimal smoothing in single-index models. Ann. Statist. 21 157–178.Google Scholar
  22. [22]
    Hardie, W. and Stoker, T. (1989): Investigating smooth multiple regression by the method of average derivatives. J. Amer. Statist. Assoc. 84 986–995.MathSciNetCrossRefGoogle Scholar
  23. [23]
    Härdie, W. and Tsybakov, A.B. (1993): How sensitive are average derivatives? J. of Econometrics 58 31–48.CrossRefGoogle Scholar
  24. [24]
    Hendricks, W. and Koenker, R. (1992): Hierarchical spline model for conditional quantiles and the demand for electricity. J. Amer. Statist. Assoc. 87 58–68.CrossRefGoogle Scholar
  25. [25]
    Horowitz, J.L. (1993): Semiparametric Estimation of a Regression Model with an Unknown Transformation of the Dependent Variable. Tech. Report., Dept. of Statistics, Univ. of Iowa.Google Scholar
  26. [26]
    Huber, P. (1985): Projection pursuit. Ann. Statist. 13 435–525.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    Klaassen, C. (1992): Efficient Estimation in the Clayton-Cuzick Model for Survival Data. Tech. Report., Univ. of Amsterdam.Google Scholar
  28. [28]
    Klein, R. and Spady, R. (1993): An efficient semiparametric estimator for binary response models. Econometrica 61 387–421.MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    Koenker, R. and Basset, G. (1978): Regression quantiles. Econometrica 46 33–50.MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    Koenker, R., Ng, P. and Portnoy, S. (1994): Quantile smoothing splines. Biometrika 81 673–680.MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    Li, K.-C. (1991): Sliced inverse regression for dimension reduction. J. Amer. Statist. Assoc. 86 316–342.MathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    Li, K.-C. and Duan, N. (1991): Slicing regression: A link-free regression method. Ann. Statist. 19 505–530.MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    Newey, W.K. and Ruud, P.A. (1991): Density Weighted Linear Least Squares. Technical Report, M.I.T.Google Scholar
  34. [34]
    Powell, J., Stock, J. and Stoker, T. (1989): Semiparametric estimation of index coefficients. Econometrica 57 1403–1430.MathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    Prakasa Rao, B.L.S. (1983): Nonparametric Function Estimation. Academic Press.Google Scholar
  36. [36]
    Samarov, A. (1993): Exploring regression structure using nonparametric functional estimation. J. Amer. Statist. Assoc. 88 836–849.MathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    Sherman, R. (1993): The limiting distribution of the maximum rank correlation estimator. Econometrica 61 123–137.MathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    Stigler, S.M. (1986): The history of statistics: The Measurement of Uncertainty before 1900. Belknap Press, Cambridge, MA.zbMATHGoogle Scholar
  39. [39]
    Truong, Y. (1989): Asymptotic properties of kernel estimates based on local medians. Ann. Statist. 17 606–617.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1996

Authors and Affiliations

  • Probal Chaudhuri
    • 1
  • Kjell Doksum
    • 2
  • Alexander Samarov
    • 3
  1. 1.Indian Statistical InstituteCalcuttaIndia
  2. 2.Univerisity of CaliforniaBerkeleyUSA
  3. 3.University of Massachusetts and M.I.T.USA

Personalised recommendations