Advertisement

High Breakdown Point Designs

  • Christine H. Müller
Part of the Lecture Notes in Statistics book series (LNS, volume 109)

Abstract

A linear model is assumed where the experimental conditions are given by the experimenter so that they are without gross errors. For this situation we regard h-trimmed Lp-estimators which generalize the least median of squares estimator and the least trimmed squares estimators. The breakdown point of these estimators depends strongly on the underlying design and breakdown point maximizing estimators can be derived within these estimators. Also breakdown point maximizing designs can be derived. But these designs are often very different from the classically optimal designs which ensure efficiency also for robust procedures. Therefore we regard compromises providing high breakdown point and high efficiency designs.

Keywords and phrases

Linear model high breakdown point trimmed Lp-estimator optimal design 

AMS 1991 subject classification

Primary 62G35 secondary 62K05 62J05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bickel, P.J. (1975): One-step Huber estimates in the linear model. J. Amer. Statist. Assoc. 70 428–434.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Coakley, C.W. (1991): Breakdown Points under Simple Regression with Replication. Technical Report No. 91-21, Department of Statistics, Virginia Polytechnic Institute and State University.Google Scholar
  3. [3]
    Coakley, C.W. and Mili, L. (1993): Exact fit points under simple regression with replication. Statist. Probab. Lett. 17 265–271.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Davies, P.L. (1993): Aspects of robust linear regression. Ann. Statist. 21 1843–1899.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Davies, P.L. (1994): Desirable properties, breakdown and efficiency in the linear regression model. Statist. Probab. Lett. 19 361–370.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Donoho, D.L. and Huber, P.J. (1983): The notion of breakdown point. In A Festschrift for Erich L. Lehmann (P.J. Bickel, K.A. Doksum and J.L. Hodges, Jr., eds.), 157–184. Wadsworth, Belmont, Calif.Google Scholar
  7. [7]
    Ellis, S.P. and Morgenthaler, S. (1992): Leverage and breakdown in L1 regression. J. Amer. Statist. Assoc. 87 143–148.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Fedorov, V.V. (1989): Optimal design with bounded density: Optimization algorithms of the exchange type. J. Statist. Plann. Inference 22 1–13.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Hössjer, O. (1991): Rank-based estimates in the linear model with high breakdown point. J. Amer. Statist. Assoc. 89 149–158.CrossRefGoogle Scholar
  10. [10]
    Jurečková, J. and Portnoy, S. (1987): Asymptotics for one-step Miestimators in regression with application to combining efficiency and high breakdown point. Commun. Statist.-Theory Meth. 16 2187–2199.CrossRefzbMATHGoogle Scholar
  11. [11]
    Mili, L. and Coakley, C.W. (1993): Robust Estimation in Structured Linear Regression. Technical Report No. 93-13, Dept. of Statistics, Virginia Polytechnic Institute and State University.Google Scholar
  12. [12]
    Müller, Ch.H. (1993): Breakdown Points for Designed Experiments. Preprint No. A-93-29, Freie Universität Berlin, Fachbereich Mathematik und Informatik. J. Statist. Plann. Inference, to appear.Google Scholar
  13. [13]
    Müller, Ch.H. (1994): Optimal designs for robust estimation in conditionally contaminated linear models. J. Statist. Plann. Inference. 38 125–140.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Müller, Ch.H. (1994): Optimal Breakdown Point Maximizing Designs. Submitted to the Proceedings of PROBASTAT’94. Tatra Mountains Mathematical Publications, Bratislava.Google Scholar
  15. [15]
    Pukelsheim, F. (1993): Optimal Design of Experiments. Wiley, New York.zbMATHGoogle Scholar
  16. [16]
    Rieder, H. (1994): Robust Asymptotic Statistics. Springer, New York.zbMATHGoogle Scholar
  17. [17]
    Rousseuw, P.J. (1984): Least median of squares regression. J. Amer. Statist. Assoc. 79 871–880.MathSciNetCrossRefGoogle Scholar
  18. [18]
    Rousseeuw, P.J. and Leroy, A.M. (1987): Robust Regression and Outlier Detection. Wiley, New York.CrossRefzbMATHGoogle Scholar
  19. [19]
    Wierich, W. (1985): Optimum designs under experimental constraints for a covariate model and an intra-class regression model. J. Statist. Plann. Inference 12 27–40.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    Wynn, H. (1982): Optimum submeasures with applications to finite population sampling. In Statistical Decision Theory and Related Topics III, Vol. 2, 485–495. Academic Press, New York.Google Scholar
  21. [21]
    Yohai, V.J. and Maronna, R.A. (1979): Asymptotic behavior of M-estimators for the linear model. Ann. Statist. 7 258–268.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1996

Authors and Affiliations

  • Christine H. Müller
    • 1
  1. 1.Freie UniversitätBerlinGermany

Personalised recommendations