Implementing M-Estimators of the Gamma Distribution

  • A. Marazzi
  • C. Ruffieux
Part of the Lecture Notes in Statistics book series (LNS, volume 109)


Several types of M-estimators for multiparameter models have been proposed in Hampel et al. (1986). This paper considers 6 options and specializes them to the Gamma distribution, with the purpose of estimating its mean. It discusses their implementation; i.e., the numerical computation of the estimates, the determination of their tuning parameters, and the evaluation of measures that characterize their distribution (e.g., bias, variance, breakdown point, …). One of the options is selected for practical use.

Key words and phrases

M-estimates Gamma distribution 

AMS 1991 subject classifications

Primary 62F35 secondary 65U05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Abramowitz M., Stegun I.A. (1965): Handbook of Mathematical Functions. Dover, New York.Google Scholar
  2. [2]
    Bhattacharjee G.P. (1970): Algorithm AS 32: The incomplete gamma integral. Appl. Statist. 19 285–287.CrossRefGoogle Scholar
  3. [3]
    Hampel F.R., Ronchetti E., Rousseeuw P.J., Stahel W.A. (1986): Robust Statistics — The Approach Based on influence Functions. Wiley, New York.zbMATHGoogle Scholar
  4. [4]
    Huber P.J. (1981): Robust Statistics. Wiley, New York.CrossRefzbMATHGoogle Scholar
  5. [5]
    Marazzi A. (1993): Algorithms, Routines, and S Functions for Robust Statistics. Wadsworth & Brooks/Cole, Pacific Grove.zbMATHGoogle Scholar
  6. [6]
    Piessens R., de Doncker-Kapenga E., Überhuber C.W., Kahaner D.K. (1980): QUADPACK: A Subroutine Library for Automatic Integration. Springer Verlag, Berlin.Google Scholar
  7. [7]
    Victoria-Feser M.P. (1993): Robust Estimation of Personal Income Distribution Models. DARP-4, October 1993. Suntory-Toyota International Centre for Economics and Related Disciplines, London School of Economics, Houghton Street, London WC2A 2AE.Google Scholar
  8. [8]
    Willimann B. (1980): Optimale robuste Schätzungen für die Parameter der Gamma-Verteilung. Diplomarbeit. Fachgruppe für Statistik, ETH Zürich, CH-8057 Zürich.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1996

Authors and Affiliations

  • A. Marazzi
    • 1
  • C. Ruffieux
    • 1
  1. 1.Institut Universitaire de MédicineLausanneSwitzerland

Personalised recommendations