Advertisement

Robustness in Discriminant Analysis

  • Y. S. Kharin
Part of the Lecture Notes in Statistics book series (LNS, volume 109)

Abstract

The problems of discriminant analysis in ℝN for L classes are considered for the situations, when hypothetical (classical) model of data is distorted. Classification of distortion types is given. Robustness of classical decision rules is evaluated to the distortions of probability density functions of observations to be classified, and robust decision rules are constructed.

Key words and phrases

Discriminant analysis types of distortions breakdown point robust decision rule 

AMS 1991 subject classifications

Primary 62H secondary 62C 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Berger, J.O. (1985): Statistical decision theory and Bayesian analysis. Springer-Verlag, New York.zbMATHGoogle Scholar
  2. [2]
    Berger, J.O. (1990): Robust Bayesian analysis. J. Statist. Plann. Inference 25 303–328.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Glick, N. (1972): Sample-based classification procedures derived from density estimators. J. Amer. Statist. Assoc. 67 116–122.CrossRefzbMATHGoogle Scholar
  4. [4]
    Huber, P.J. (1981): Robust Statistics. John Wiley, New York.CrossRefzbMATHGoogle Scholar
  5. [5]
    Radane, J.B. et al. (1978): Stable decision problems. Ann. Statist. 6 1095–1110.MathSciNetCrossRefGoogle Scholar
  6. [6]
    Kadane, J.B. (ed., 1984): Robustness of Bayesian Analysis. North-Holland, New York.Google Scholar
  7. [7]
    Kazakos, D. (1982): Statistical discrimination using inaccurate models. IEEE Trans. IT-28 720–728.MathSciNetGoogle Scholar
  8. [8]
    Kharin, Y.S. (1981): About statistical classification accuracy at MC-estimators using. Probability Theory and Its Applications 26 866–867.Google Scholar
  9. [9]
    Kharin, Y.S. (1983): Investigation and optimization of Rosenblatt-Parzen classificator by asymptotic expansions. Automatics and remote control 1 91–100.MathSciNetGoogle Scholar
  10. [10]
    Kharin, Y.S. (1983): About decision rule robustness under misclassiflcations presence in training samples. Automatics and remote control 11 100–110.MathSciNetGoogle Scholar
  11. [11]
    Kharin, Y.S. (1984): Robustness investigation for the decision rules by risk asymptotic expansion method. In Proceedings of the Third Prague Symposium on Asymptotic Statistics (P. Mandi ed.), 309–317. H.X.-Oxford, Elsevier, Amsterdam.Google Scholar
  12. [12]
    Kharin, Y.S. et al. (1991): Asymptotic robustness of discriminant procedures for dependent and non-homogeneous observations. In Probability Theory and Mathematical Statistics 602–610. Proc. of the 5 Vilnius Conf., Utrecht, Netherlands.Google Scholar
  13. [13]
    Kharin, Y.S. (1992): Robustness in Statistical Pattern Recognition. Minsk, Universitetskoje.Google Scholar
  14. [14]
    Kharin, Y.S. and Zhuk, E.E. (1993): Asymptotic robustness in clusteranalysis for the case of Tukey-Huber distortions. In Information and Classification (Opitz, O., Lausen, B., Klar, R., eds.), 31–39. Springer-Verlag, New York.Google Scholar
  15. [15]
    Lachenbruch, P.A. (1966): Discriminant analysis when the initial samples are misclassified. Technometrics 8 657–662.MathSciNetCrossRefGoogle Scholar
  16. [16]
    Lawoko, C.R.O. et al. (1986): Asymptotic error rates of the W and Z statistics when the training observations are dependent. Pattern recognition 18 467–471.MathSciNetCrossRefGoogle Scholar
  17. [17]
    Okamoto, M. (1963): An asymptotic expansion for the distribution of the linear discriminant function. Ann. Math. Statist. 34 1286–1301.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    Randless, R.H. (1978): Generalized linear and quadratic discriminant functions using robust estimates. J. Amer. Statist. Assoc. 73 564–568.CrossRefGoogle Scholar
  19. [19]
    Raudis, S.H. (1976): Sample size finiteness in classification problems. Statistical control problems 18 1–180.Google Scholar
  20. [20]
    Tiku, M.L. et al. (1986): Robust Inference. Marcel Dekker, New York.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1996

Authors and Affiliations

  • Y. S. Kharin
    • 1
  1. 1.Belarussian State UniversityBelarus

Personalised recommendations