Skip to main content

Collision Broadening and Radio-frequency Spectroscopy

  • Chapter
Amazing Light
  • 506 Accesses

Abstract

Spectroscopy naturally began at optical wavelengths, then spread to the ultraviolet and infrared. Gas discharge tubes at low pressures reduced collision broadening; narrow lines and interferometric techniques made possible high-resolution spectrometry, including hyperfine structure. Wolfgang Pauli’s interpretation of this as due to nuclear spin [1], was soon followed by a measurement in Oxford of the hyperfine structure of caesium by Derek Jackson [2]. From this, he estimated a value for the nuclear magnetic moment of 133Cs, though the nuclear spin was not known. (In later years, he remarked: “Sommerfeld did it by wave mechanics; I did it by arithmetic”) Discharge tubes with cathodes cooled in liquid air were used to reduce Doppler broadening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Pauli, Naturwiss. 12, 741 (1924).

    Article  ADS  Google Scholar 

  2. D. A. Jackson, Proc. Roy. Soc. Lond. 121, 432 (1928).

    Google Scholar 

  3. J. H. Van Vleck and V. W. Weisskopf, Rev. Mod. Phys. 17, 227 (1946).

    Article  ADS  Google Scholar 

  4. J. H. Van Vleck, Phys. Rev. 71, 413 and 72, 513 (1947).

    ADS  Google Scholar 

  5. R. H. Dicke, Rev. Sci. Inst. 17, 269 (1946).

    Article  ADS  Google Scholar 

  6. R. H. Dicke, R. Beringer, R. L. Kyhl, and A. B. Vane, Phys. Rev. 70, 340 (1946).

    Article  ADS  Google Scholar 

  7. R. H. Dicke and R. Beringer, Astrophys. J. 103, 375 (1946).

    Article  ADS  Google Scholar 

  8. H. I. Ewen and E. M. Purcell, Phys. Rev. 83, 881 (1951).

    Google Scholar 

  9. C. A. Muller and J. H. Oort, Nature 168, 351 (1952).

    Google Scholar 

  10. G. E. Becker and S. H. Autler, Phys. Rev. 70, 300 (1946).

    Article  ADS  Google Scholar 

  11. W. E. Lamb, Jr., Phys. Rev. 70, 308 (1946).

    Article  ADS  Google Scholar 

  12. R. Beringer, Phys. Rev. 70, 53 (1946).

    Article  ADS  Google Scholar 

  13. H. R. L. Lamont, Proc. Phys. Soc. Lond. 61, 562 (1948); Phys. Rev. 74, 353 (1948).

    ADS  Google Scholar 

  14. M. W. P. Strandberg, C. Y. Meng, and J. G. Ingersoll, Phys. Rev. 75, 1524 (1949).

    Article  ADS  Google Scholar 

  15. R. S. Andersen, C. M. Johnson, and W. Gordy, Phys. Rev. 83, 1061 (1951).

    Article  ADS  Google Scholar 

  16. C. E. Cleeton and N. H. Williams, Phys. Rev. 45, 234 (1934).

    Article  ADS  Google Scholar 

  17. B. Bleaney, J. H. N. Loubser, and R. P. Penrose, Proc. Phys. Soc. Lond. A59,185 and 194(1947).

    Google Scholar 

  18. B. Bleaney and R. P. Penrose, Nature 137, 339 (1946); Phys. Rev. 70, 775 (1946); Proc. Roy. Soc. Lond. A189, 358 (1947).

    Google Scholar 

  19. Hsi-Yin Shen, E. F. Barker, and R. M. Dennison, Phys. Rev. 60, 786 (1941).

    Article  ADS  Google Scholar 

  20. J. H. Van Vleck and V. W. Weisskopf, Rev. Mod. Phys. 17, 227 (1945).

    Article  ADS  Google Scholar 

  21. B. Bleaney and R. P. Penrose, Proc. Phys. Soc. Lond. 59, 418 (1947).

    Article  ADS  Google Scholar 

  22. B. Bleaney and J. H. N. Loubser, Nature 161, 522 (1948).

    Article  ADS  Google Scholar 

  23. B. Bleaney and R. P. Penrose, Proc. Phys. Soc. Lond. 60, 540 (1948).

    Article  ADS  Google Scholar 

  24. B. Bleaney and J. H. N. Loubser, Proc. Phys. Soc. Lond. 63A, 483 (1950).

    ADS  Google Scholar 

  25. W. E. Good, Phys. Rev. 70, 109A (1946).

    Google Scholar 

  26. B. P. Dailey, R. H. Kyhl, M. P. Strandberg, J. H. Van Vleck, and E. Bright Wilson, Jr., Phys. Rev. 70, 984L (1946).

    Google Scholar 

  27. T. W. Dakin, W. E. Good, and D. K. Coles, Phys. Rev. 71, 640L (1947).

    Google Scholar 

  28. M. W. P. Strandberg, T. Wentink, and R. L. Kyhl, Phys. Rev. 75, 270 (1949).

    Article  ADS  Google Scholar 

  29. B. Bleaney and R. P. Penrose, Proc. Phys. Soc. Lond. 60, 83 (1948).

    Article  ADS  Google Scholar 

  30. E. Zavoisky, Fiz. Zh. 9,211 and 245 (1945).

    Google Scholar 

  31. J. H. E. Griffiths, Nature 158, 670 (1946).

    Article  ADS  Google Scholar 

  32. D. M. S. Bagguley and J. H. E. Griffiths, Nature 162, 538 (1948).

    Article  ADS  Google Scholar 

  33. M. H. L. Pryce, Nature 162, 539 (1948).

    Article  ADS  Google Scholar 

  34. D. M. S. Bagguley and J. H. E. Griffiths, Nature 160, 532 (1947).

    Article  ADS  Google Scholar 

  35. B. Bleaney and R. P. Penrose, Proc. Phys. Soc. Lond. 60, 395 (1948).

    Article  ADS  Google Scholar 

  36. D. M. S. Bagguley, B. Bleaney, J. H. E. Griffiths, R. P. Penrose, and B. I. Plumpton, Proc. Phys. Soc. Lond. A61, 542 and 551 (1948).

    Google Scholar 

  37. R. P. Penrose and C. J. Gorter; Nature 163, 992 (1949); A. Abragam and M. H. L. Pryce, Nature 163, 993 (1949).

    ADS  Google Scholar 

  38. B. Bleaney, Phil. Mag. 43, 441 (1951).

    Google Scholar 

  39. B. Bleaney, J. M. Daniels, M. A. Grace, H. Halban, N. Kurti, and F. N. H. Robinson, Phys. Rev. 85, 668 (1952).

    Article  ADS  Google Scholar 

  40. O. Stern, Z. Phys. 7, 249 (1921).

    Article  ADS  Google Scholar 

  41. D. A. Jackson and H. G. Kuhn, Proc. Roy. Soc. Lond. A148, 335 (1935).

    Google Scholar 

  42. G. Breit and 1.1. Rabi, Phys. Rev. 38, 2082 (1931).

    Article  ADS  Google Scholar 

  43. C. J. Gorter, Physica 3, 503 and 995 (1936).

    Google Scholar 

  44. N. F. Ramsey, Molecular Beams, The Clarendon Press, Oxford (1956).

    Google Scholar 

  45. J. Weber, IRE Trans. Prof. Group on Electron Devices 3 (1953) and N. G. Basov and A. M. Prokhorov, J. Exptl. Theor. Phys. (USSR) 95, 282 (1954).

    Google Scholar 

  46. J. P. Gordon, H. J. Zeiger, and C. H. Townes, Phys. Rev. 95, 282 (1954).

    Article  ADS  Google Scholar 

  47. B. Bleaney, Physica 12, 595 (1946).

    Article  ADS  Google Scholar 

  48. Arthur Roberts, Yardley Beers, and A. G. Hill, Phys. Rev. 70, 112 (1946).

    Google Scholar 

  49. J. H. N. Loubser and C. H. Townes, Phys. Rev. 76, 178A (1949).

    Google Scholar 

  50. J. H. N. Loubser and J. A. Klein, Phys. Rev. 78, 348A (1950).

    Google Scholar 

  51. J. A. Klein, J. H. N. Loubser, A. H. Nethercot, and C. H. Townes, Rev. Sci. Inst. 23, 78 (1952).

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Bleaney, B. (1996). Collision Broadening and Radio-frequency Spectroscopy. In: Chiao, R.Y. (eds) Amazing Light. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2378-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2378-8_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7521-3

  • Online ISBN: 978-1-4612-2378-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics