Amazing Light pp 507-514 | Cite as

From Laser Beam Filamentation to Optical Solitons: The Influence of C. H. Townes on the Development of Modern Nonlinear Optics

  • Elna M. Nagasako
  • Robert W. Boyd


Self-action effects began to be studied soon after the advent of the laser. Suddenly sources were available that could create beams of light which not only could influence the materials in which they were propagating, but could also, through this material interaction, act back on themselves. These self-action effects could alter the size and shape of the laser beam and introduce new spectral components. In this article, we single out self-focusing, and the associated phenomena of filamentation and the generation of spatial solitons, and describe how recent research has evolved from the pioneering contribution of C. H. Townes.


Transverse Dimension Dark Soliton Bright Soliton Spatial Soliton Side Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A pedagogical discussion of self-focusing and self-trapping is presented in Chapter 6 of R. W. Boyd, Nonlinear Optics ( Academic, San Diego, 1992 ).Google Scholar
  2. [2]
    M. Hercher, J. Opt. Soc. Am. 54, 563 (1964).Google Scholar
  3. [3]
    R. Y. Chiao, E. Garmire, and C. H. Townes, Phys. Rev. Lett. 13,479 (1964); Erratum, ibid14, 1056 (1965).Google Scholar
  4. [4]
    G. A. Askar’yan, Zh. Eksp. Teor. Fiz. 42,1567 (1962); English translation: Sov. Phys. JETP 15, 1088 (1962).Google Scholar
  5. [5]
    The correction factor of 1/2 introduced by H. A. Haus, Appl. Phys. Lett. 8,128 (1966) has been included.Google Scholar
  6. [6]
    P. L. Kelley, Phys. Rev. Lett. 15, 1005 (1965); Erratum, ibid 16, 384 (1966).Google Scholar
  7. [7]
    N. Bloembergen and Y. R. Shen, Phys. Rev. Lett. 13, 720 (1964); P. Lallemand and N. Bloembergen, Appl. Phys. Lett. 6, 210 (1965); F. J. McClung, W. G. Wagner, and D. Weiner, Phys. Rev. Lett. 15, 96 (1965).Google Scholar
  8. [8]
    E. L. Dawes and J. H. Marburger, Phys. Rev. 179, 862 (1969); See also J. H. Marburger, Prog. Quantum Electron. 4, 35 (1975).Google Scholar
  9. [9]
    For a discussion of the moving focus model, see J. H. Marburger, Prog. Quantum Electron. 4, 35 (1975) and Y. R. Shen, Prog. Quantum Electron. 4, 1 (1975).CrossRefGoogle Scholar
  10. [10]
    E. Garmire, R. Y. Chiao, and C. H. Townes, Phys. Rev. Lett. 16, 347 (1966).ADSCrossRefGoogle Scholar
  11. R. Y. Chiao, M. A. Johnson, S. Krinsky, H. A. Smith, C. H. Townes, and E. Garmire, IEEE J. Quantum Electron. QE-2, 467 (1966).Google Scholar
  12. [12]
    M. M. T. Loy and Y. R. Shen, Phys. Rev. Lett. 22, 994 (1969).ADSCrossRefGoogle Scholar
  13. [13]
    R. Y. Chiao, P. L. Kelley, and E. Garmire, Phys. Rev. Lett. 17, 1158 (1966).ADSCrossRefGoogle Scholar
  14. V. I. Bespalov and V. I. Talanov, Zh. Eksp. Teor. Fiz. Pis’ma 3, 471 (1966); English translation: JETP Lett. 3, 307 (1966).Google Scholar
  15. [15]
    R. L. Carman, R. Y. Chiao, and P. L. Kelley, Phys. Rev. Lett. 17, 1281 (1966).ADSCrossRefGoogle Scholar
  16. [16]
    E. S. Bliss, D. R. Speck, J. F. Holzrichter, J. H. Erkkila, and A. J. Glass, Appl. Phys. Lett. 25, 448 (1974).ADSCrossRefGoogle Scholar
  17. [17]
    For extensive work on other systems in nonlinear and quantum optics where quantum noise initiates the process, see I. A. Walmsley and M. G. Raymer, Phys. Rev. Lett. 50, 962 (1983); R. Glauber and F. Haake, Phys. Lett. 68A, 29 (1978); G. S. Agarwal and R. W. Boyd, Phys. Rev. A 38, 4019 (1988); M. D. Reid and D. F. Walls, Phys. Rev. A 34, 4929 (1986); and M. Sargent III, D. A. Holm, and M. S. Zubairy, Phys. Rev. A 31,3112(1985).Google Scholar
  18. [18]
    E. M. Nagasako, R. W. Boyd, and G. S. Agarwal, submitted for publication. A related paper “Quantum fluctuations in nonlinear optical self-focusing,” by E. M. Wright has appeared in Chaos, Solitons, & Fractals 4, 1805 (1994).CrossRefGoogle Scholar
  19. [19]
    V. E. Zakharov and A. B. Shabat, Zh. Eksp. Teor. Fiz. 61, 118 (1971); English translation: Sov. Phys. JETP 34, 62 (1972).MathSciNetADSGoogle Scholar
  20. [20]
    A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142 (1973); ibid 23, 171 (1973).Google Scholar
  21. [21]
    Y. Silberberg, Opt. Lett. 15, 1282 (1990).ADSCrossRefGoogle Scholar
  22. [22]
    Silberberg (Ref. 21) notes that the self-trapped beam power he calculates differs by 1.5% from the value given in Ref. 3.Google Scholar
  23. [23]
    G. A. Swartzlander, Jr. and C. T. Law, Phys. Rev. Lett. 69, 2503 (1992).ADSCrossRefGoogle Scholar
  24. [24]
    P. Coullet, L. Gil, and F. Rocca, Opt. Comm. 73, 403 (1989).ADSCrossRefGoogle Scholar
  25. [25]
    D. R. Andersen, D. E. Hooten, G. A. Swartzlander, Jr., and A. E. Kaplan, Opt. Lett. 15, 783 (1990).ADSCrossRefGoogle Scholar
  26. [26]
    G. R. Allan, S. R. Skinner, D. R. Andersen, and A. L. Smirl, Opt. Lett. 16, 156 (1991).ADSGoogle Scholar
  27. [27]
    G. A. Swartzlander, Jr., D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, Phys. Rev. Lett. 66, 1583 (1991).ADSCrossRefGoogle Scholar
  28. [28]
    J. S. Aitchison, Y. Silberberg, A. M. Weiner, D. E. Leaird, M. K. Oliver, J. L. Jackel, E. M. Vogel, and P. W. E. Smith, J. Opt. Soc. Am. B 8, 1290 (1991).ADSCrossRefGoogle Scholar
  29. [29]
    M. Shalaby and A. Barthelemy, Opt. Comm. 94, 341 (1992).ADSCrossRefGoogle Scholar
  30. [30]
    A. Villeneuve, J. S. Aitchison, J. U. Kang, P. G. Wigley, and G. I. Stegeman, Opt. Lett. 19, 761 (1994).ADSCrossRefGoogle Scholar
  31. [31]
    G. C. Duree, Jr., J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. J. Sharp, and R. R. Neurgaonkar, Phys. Rev. Lett. 71, 533 (1993).ADSGoogle Scholar
  32. [32]
    G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. Di Porto, E. Sharp, and A. Yariv, Phys. Rev. Lett. 74, 1978 (1995).ADSCrossRefGoogle Scholar
  33. [33]
    K. Hayata and M. Koshiba, Phys. Rev. Lett. 71, 3275 (1993).ADSCrossRefGoogle Scholar
  34. [34]
    L. Torner, C. R. Menyuk, W. E. Torruellas, and G. I. Stegeman, Opt. Lett. 20, 13 (1995).ADSCrossRefGoogle Scholar
  35. [35]
    D. E. Edmundson and R. H. Enns, Opt. Lett. 17, 586 (1992).ADSCrossRefGoogle Scholar
  36. [36]
    R. H. Enns and S. S. Rangnekar, Phys. Rev. A 45, 3354 (1992).ADSCrossRefGoogle Scholar
  37. [37]
    R. de la Fuente, A. Barthelemy, and C. Froehly, Opt. Lett. 16, 793 (1991).ADSCrossRefGoogle Scholar
  38. [38]
    B. Luther-Davies and X. Yang, Opt. Lett. 17, 1755 (1992).ADSCrossRefGoogle Scholar
  39. [39]
    S. Blair, K. Wagner, and R. McLeod, Opt. Lett. 19, 1943 (1994).ADSCrossRefGoogle Scholar
  40. [40]
    D. M. Pennington, M. A. Henesian, and R. W. Hellwarth, Phys. Rev. A. 39, 3003 (1989).ADSCrossRefGoogle Scholar
  41. [41]
    A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, Opt. Lett. 20, 73 (1995).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1996

Authors and Affiliations

  • Elna M. Nagasako
  • Robert W. Boyd

There are no affiliations available

Personalised recommendations