Amazing Light pp 497-505 | Cite as

Infrared Semiconductor Laser by Means of J x H Force Excitation of Electrons and Holes

  • Takeshi Morimoto
  • Meiro Chiba
  • Giyuu Kido

Abstract

In the earlier stage of the investigation of lasing action in solids, especially in semiconductors, the possibility of utilizing Landau levels was proposed by several investigators [1,2]. While these attempts were not successful, the first achievements of a ruby laser was reported by Maiman in 1960 [3]. In semiconductors, after the subsequent developments of injection-type semiconductor lasers [4], the research shifted to the lasing action by use of the quantum size effect in low-dimensional materials, such as quantum wires [5,6] and dots [5]: The principle is based on utilizing the singularity in the density of states of electrons associated with quantization, which produces discrete energy states due to the finite-size effect.

Keywords

Recombination Hull Stim Ruby 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. Lax and K. J. Button, Physics of Solids in Intense Magnetic Fields, E.D. Haidemenakis (ed.), p. 145 ( Plenum, New York, 1969 ).Google Scholar
  2. [2]
    B. Lax, J. Mag. & Mag. Matter 11, 1 (1979); P. Phelan, A. Calawa, R. H. Rediker, R. J. Keyes, and B. Lax, Appl. Phys. Lett. 3, 143 (1963).ADSGoogle Scholar
  3. [3]
    T.H. Maiman, Nature 187, 493 (1960).ADSCrossRefGoogle Scholar
  4. [4]
    A. Yariv, Introduction to Optical Electronics, Chap. 15 ( Holt, Rinehart and Winston, New York, 1985 ).Google Scholar
  5. [5]
    C. Weisbuck, Proc. of 22nd International Conference on Physics of Semiconductors, E. J. Lockwood (ed.), (World Scientific, Singapore, 1955); W. Wegscheider, L. N. Pfeiffer, M. M. Dignam, A. Pinczuk, K. W. West, S. L. McCall, and R. Hull, Phys. Rev. Lett. 71, 4071 (1994).Google Scholar
  6. [6]
    R. Cingolani, Proc. of 22nd International Conference on Physics of Semiconductors, E. J. Lockwood (ed.), ( World Scientific, Singapore, 1955 ).Google Scholar
  7. [7]
    T. Morimoto and M. Chiba, Infrared Phys. 29, 371 (1989).ADSCrossRefGoogle Scholar
  8. [8]
    T. Morimoto and M. Chiba, J. Phys. Soc. Jpn. 60, 2446 (1991).ADSCrossRefGoogle Scholar
  9. [9]
    T. Morimoto, M. Chiba, G. Kido, and A Tanaka, Semicond. Sci. Technol. 8, S417 (1993).ADSCrossRefGoogle Scholar
  10. [10]
    F. Capasso, Semiconductors and Semimetals 22, Part D, 1, R. K. Willardson and A. C. Beer (eds.) (Academic Press, New York, 1985 ).Google Scholar
  11. [11]
    T. Morimoto and M. Chiba, Phys. Lett. A 85, 395 (1981); A 95, 343 (1983).Google Scholar
  12. T. Morimoto and M. Chiba, Jpn. J. Appl. Phys. 23, L821 (1984); V. K. Malyutenko, S. S. Bolgov, and E. I. Yablonovsky, Infrared Phys. 25, 115 (1985).Google Scholar
  13. [13]
    T. Morimoto, M. Chiba, S. Ueda, G. Kido, and M. Inoue, Physica B 184, 123 (1993).ADSCrossRefGoogle Scholar
  14. [14]
    B. Burstein, G. C. Picus, R. F. Wallis, and F. Blatt, Phys. Rev. 113, 15 (1959).ADSCrossRefGoogle Scholar
  15. [15]
    W. Zawadzki, Surface Sci. 37, 218 (1973).ADSCrossRefGoogle Scholar
  16. [16]
    T. Morimoto, M. Chiba, S. Ueda, G. Kido, and T. Hamamoto, Proc. of 11th International Conference on High Magnetic Fields in Semiconductor Physics, D. Heiman (ed.), ( World Scientific, Singapore, 1995 ).Google Scholar
  17. [17]
    T. Morimoto and M. Chiba, Semicond. Sci. Technol. 7, B652 (1992).CrossRefGoogle Scholar
  18. [18]
    C. R. Pigeon and R. N. Brown, Phys. Rev. 146, 575 (1966).ADSCrossRefGoogle Scholar
  19. [19]
    F. R. Kessler, P. Paul, and R. Nies, Phys. Stat. Sol. (b) 167, 349 (1991).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1996

Authors and Affiliations

  • Takeshi Morimoto
  • Meiro Chiba
  • Giyuu Kido

There are no affiliations available

Personalised recommendations