The Effect of MHC Encoding Transgenes on IDDM in NOD Mice

  • Ruby Quartey Papafio
  • Don Healey
  • Lorraine O’reilly
  • Patricia Hutchings
  • Sue Day
  • Anne Cooke
Part of the Serono Symposia USA book series (SERONOSYMP)


The nonobese diabetic (NOD) mouse provides an excellent animal model (1) of insulin-dependent diabetes mellitus (IDDM), an autoimmune disease in which the β cells of the pancreas are selectively and specifically destroyed by cells of the immune system. The spontaneous development of IDDM in NOD mice has been shown to be under polygenic control with major histocompatibility complex (MHC)-encoded genes playing a major role (2, 3). The MHC class II of the NOD consists of Aαdg7 and Eαbg7 heterodimers, thus resulting in the lack of expression of I-E in NOD mice (2) The Aβ chain of NOD mice contains several unusual amino acids in the first external domain including a serine at position 57 and a histidine at position 56 where most other mouse strains have an aspartate and a proline, respectively (4). Interest in the amino acid usage at position 57 stemmed largely from genetic studies of IDDM in humans, where it was observed that individuals protected from disease development tend to have a charged residue at this position in their DQβ chain (5). By analogy, therefore, it was proposed that serine 57 in NODAβg7 may predispose to development of IDDM in this strain.


Major Histocompatibility Complex Major Histocompatibility Complex Class Visceral Leishmaniasis Amino Acid Usage Altered Peptide Ligand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Makino S, Kunimoto K, Muraoka Y, Mizushima Y, Katagiri K, Tochino Y. Breeding of a nonobese diabetic strain of mouse. Exp Anim 1980;29:1–13Google Scholar
  2. 2.
    Hattori M, Buse JB, Jackson A, Glimcher L, Dorf ME, Minami S, et al. The NOD mouse: recessive diabeogenic gene in the major histocompatibility complex. Science 1986;231:733–5PubMedCrossRefGoogle Scholar
  3. 3.
    Todd JA, Aitman TJ, Cornall RJ, Ghosh S, Hall JRS, Hearne CM, et al. Genetic analysis of autoimmune type 1 diabetes mellitus in mice. Nature 1991;351:542–7PubMedCrossRefGoogle Scholar
  4. 4.
    Acha-Orbea H, McDevitt HO. The first external domain of the nonbese diabetic mouse class II I-A (3 chain is unique. Proc Natl Acad Sci USA 1987;84:2435–9PubMedCrossRefGoogle Scholar
  5. Todd JA, Bell JI, McDevitt HO. HLA-DQJ3 gene contribute to susceptibility and resistance to insulin dependent diabetes mellitus. Nature 1987;329:599–604PubMedCrossRefGoogle Scholar
  6. 6.
    Miyazaki T, Uno M, Vehira KM, Kikutani H, Kishimoto T, Kimoto M, et al. Direct evidence for the contribution of the unique l-NOD to the development of insulitis in non-obese diabetic mice. Nature 1990;345:722–4PubMedCrossRefGoogle Scholar
  7. 7.
    Slattery RM, Kjer-Nielsen L, Allison J, Charlton B, Mandel TE, Miller JFAP. Prevention of diabetes in non-obese diabetic 1-AK transgenic mice. Nature 1990;345:724–6PubMedCrossRefGoogle Scholar
  8. 8.
    Lund T, O’Reilly L, Hutchings P, Kanagawa O, Simpson E, Gravely R, et al. Prevention of insulin-dependent diabetes mellitus in non-obese diabetic mice by transgenes encoding modified 1-A (3 chain or 1-E a chain. Nature 1990;345:727–9PubMedCrossRefGoogle Scholar
  9. 9.
    Singer SM,Tisch R, Yang XD, McDevitt HO. An Abd transgene prevents diabetes in nonobese diabetic mice by inducing regulatory T cells. Proc Natl Acad Sci USA 1993; 90: 9566–70PubMedCrossRefGoogle Scholar
  10. 10.
    Uehira M, Uno M, Kürner T, Kikutani H, Mori KI, Inomoto T, et al. Development of autoimmune insulitis is prevented in Eαd but not Aβk NOD transgenic mice. Int Immunol 1989;1:210–3CrossRefGoogle Scholar
  11. 11.
    Bohme J, Schuhbaur B, Kanagawa O, Benoist C, Mathis D. MHC linked protection from diabetes dissociated from clonal deletion of T cells. Science 1990;249:293–5PubMedCrossRefGoogle Scholar
  12. 12.
    Harada M, Makino S. Promotion of spontaneous diabetes in the non-obese diabetes prone mice by cyclophosphamide. Diabetologia 1984;27:604–8PubMedCrossRefGoogle Scholar
  13. 13.
    Miller BJ, Appel MC, O’Neil JJ, Wicker LS. Both the Lyt2+ and L3T4+ T cell subsets are required for the transfer of diabetes in nonobese diabetic mice. J Immunol 1988;140:52–8PubMedGoogle Scholar
  14. 14.
    Varey A-M, Hutchings P, O’Reilly L, Hussell T, Waldmann H, Simpson E, et al. The development of insulin-dependent diabetes mellitus in non-obese diabetic mice: the role of CD4+ and CD8+ T cells. Biochem Soc Trans 1991;19:187–91PubMedGoogle Scholar
  15. 15.
    Hutchings PR, Simpson E, O’Reilly L, Lund T, Waldmann H, Cooke A. The involvement of Ly2+T cells in beta cell destruction. J Autoimmun 1990;3(suppl):101–9PubMedCrossRefGoogle Scholar
  16. 16.
    Evavold BD, Allen PM. Separation of IL-4 production from Th cell prolifera¬tion by an altered T cell receptor ligand. Science 1991;252:1308–10PubMedCrossRefGoogle Scholar
  17. 17.
    Sloan-Lancaster J, Evavold BD, Allen PM. Induction of T-cell anergy by altered T-cell-receptor ligand on live antigen-presenting cells. Nature 1993;363:156–9PubMedCrossRefGoogle Scholar
  18. 18.
    Pennline KJ, Roque GE, Monahan M. Recombinant IL-10 prevents onset of diabetes in the nonobese diabetic mouse. Clin Immunol Immunopathol 1994;71:169–75PubMedCrossRefGoogle Scholar
  19. 19.
    Trembleau S, Penna G, Bosi E, Mortara A, Gately MK, Adorini L. Interleukin- 12 administration induces T helper type 1 cells and accelerates autoimmune diabetes in NOD mice. J Exp Med 1995;181:817–21PubMedCrossRefGoogle Scholar
  20. 20.
    Parish NM, Chandler P, Quartey-Papafio R, Simpson E, Cooke A. The effect of bone marrow and thymus chimerism between non-obese diabetic (NOD) and NOD-E transgenic mice, on the expression and prevention of diabetes. Eur J Immunol 1993;23:2667–75PubMedCrossRefGoogle Scholar
  21. 21.
    Kaye PM, Cooke A, Lund T, Wattie M, Blackwell JM. Altered course of visceral leishmaniasis in mice expressing transgenic I-E molecules. Eur J Immunol 1992;22:357–64PubMedCrossRefGoogle Scholar
  22. 22.
    Slattery RM, Miller JF, Heath WR, Charlton B. Failure of protective major histocompatibility complex class II molecule to delete autoreactive T cells in autoimmune diabetes. Proc Natl Acad Sci USA 1993;90:10808–10PubMedCrossRefGoogle Scholar
  23. 23.
    Deng H, Apple R, Clare-Salzer M, Tremblau S, Mathis D, Adorini L, et al. Determinant capture as a possible mechanism of protection afforded by major histocompatibility complex class II molecules in autoimmune disease. J Exp Med 1993;178:675–80PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1996

Authors and Affiliations

  • Ruby Quartey Papafio
  • Don Healey
  • Lorraine O’reilly
  • Patricia Hutchings
  • Sue Day
  • Anne Cooke

There are no affiliations available

Personalised recommendations