Skip to main content

Promoter Analysis of Male Germ-Cell-Specific Genes: Nuclear Transition Protein-1 and Histone H1t

  • Chapter
Cellular and Molecular Regulation of Testicular Cells

Abstract

Spermatogenesis demonstrates a regulated program of genetic expression driving a complex progression of cellular differentiation. A current challenge is to understand the factors responsible for the many examples of differential gene expression documented during spermatogenesis (1,2). An aspect of male germ-cell differentiation that is fairly well described at the molecular level involves changes in DNA packaging by basic chromosomal proteins. Histones are responsible for the fundamental packaging unit of chromatin, the nucleosome, and early male germ cells contain the standard somatic forms of histones. However, beginning in late spermatogonia, novel histone variants that are unique to the male germ line start to appear. These include the core histone variants TH2A, TH2B, and TH3, as well as the linker histone variant H1t. The variants replace some, though not all, of their somatic-type counterparts, so that by the last third of meiotic prophase the spermatocyte nucleus is substantially enriched for testis-specific histones. This chromatin state persists into round spermatids until the spermatid nuclei elongate and condense (3, 4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hecht NB. Gene expression during male germ cell development. In: Desjardins C, Ewing, LL, eds. Cell and molecular biology of the testis. New York: Oxford University Press, 1993:400–32.

    Google Scholar 

  2. Eddy EM, Welch JE, O’Brien, DA. Gene expression during spermatogenesis. In: de Kretser D, ed. Molecular biology of the male reproductive system. San Diego: Academic Press, 1993:181–232.

    Google Scholar 

  3. Meistrich ML. Histone and basic nuclear protein transitions in mammalian spermatogenesis. In: Hnilica LS, Stein GS, Stein JL, eds. Histones and other basic nuclear proteins. Boca Raton, FL: CRC Press, 1989:165–82.

    Google Scholar 

  4. Kistler WS. Structures of testis-specific histones, spermatid transition proteins and their genes in mammals. In: Hnilica LS, Stein GS, Stein JL, eds. Histones and other basic nuclear proteins. Boca Raton, FL: CRC Press, 1989:331–45.

    Google Scholar 

  5. Kistler WS, Geroch ME, Williams-Ashman HG. Specific basic proteins from mammalian testes, isolation and properties of small basic proteins from rat testes and epididymal spermatozoa. J Biol Chem 1973;248:4532–43.

    PubMed  CAS  Google Scholar 

  6. Alfonso PJ, Kistler WS. Immunohistochemical localization of spermatid nuclear transition protein 2 in the testes of rats and mice. Biol Reprod 1993;48:522–9.

    Article  PubMed  CAS  Google Scholar 

  7. Lanneau M, Loir M. An electrophoretic investigation of mammalian spermatid-specific nuclear proteins. J Reprod Fertil 1982;65:163–70.

    Article  PubMed  CAS  Google Scholar 

  8. Oliva R, Dixon GH. Vertebrate protamine genes and the histone-to-protamine replacement reaction. Prog Nucleic Acid Res Mol Biol 1990;40:25–94.

    Article  Google Scholar 

  9. Green GR, Balhorn R, Poccia DL, Hecht NB. Synthesis and processing of mammalian protamines and transition proteins. Mol Reprod Dev 1994;37:255–63.

    Article  PubMed  CAS  Google Scholar 

  10. Cole KD, Kandala JC, Kistler WS. Isolation of the gene for the testis-specific H1 histone variant H1t. J Biol Chem 1986;261:7178–83.

    PubMed  CAS  Google Scholar 

  11. Heidaran MA, Kozak CA, Kistler WS. Nucleotide sequence of the Stp-1 gene coding for rat spermatid nuclear transition protein 1 (TP1): homology with protamine P1 and assignment of the mouse Stp-1 gene to chromosome 1. Gene 1989;75:39–46.

    Article  PubMed  CAS  Google Scholar 

  12. Heidaran MA, Showman RM, Kistler WS. A cytochemical study of the transcriptional and translational regulation of nuclear transition protein 1 (TP1), a major chromosomal protein of mammalian spermatids. J Cell Biol 1988; 106:1427–33.

    Article  PubMed  CAS  Google Scholar 

  13. Mali P, Kaipia A, Kangasniemi M, Toppari J, Sandberg M, Hecht NB, Parvinen M. Stage-specific expression of nucleoprotein mRNAs during rat and mouse spermiogenesis. Reprod Fertil Dev 1989;1:369–82.

    Article  PubMed  CAS  Google Scholar 

  14. Kremer EJ, Kistler WS. Localization of mRNA for testis-specific histone H1t by in situ hybridization. Exp Cell Res 1991;197:330–2.

    Article  PubMed  CAS  Google Scholar 

  15. Kleene KC, Distel RJ, Necht NB. Translational regulation and deadenylation of a protamine mRNA during spermiogenesis in the mouse. Dev Biol 1984; 105:71–9.

    Article  PubMed  CAS  Google Scholar 

  16. Heidaran MA, Kistler WS. Transcriptional and translational control of the message for transition protein 1, a major chromosomal protein of mammalian spermatids. J Biol Chem 1987;262:13309–15.

    PubMed  CAS  Google Scholar 

  17. Kleene KC. Poly(A) shortening accompanies the activation of translation of five mRNAs during spermiogenesis in the mouse. Development 1989;106:367–73.

    PubMed  CAS  Google Scholar 

  18. Habener JF. Cyclic AMP response element binding proteins: a cornucopia of transcription factors. Mol Endocrinol 1990;4:1087–94.

    Article  PubMed  CAS  Google Scholar 

  19. Montminy MR, Gonzalez GA, Yamamoto KK. Characteristics of the cAMP response unit. Recent Prog Horm Res 1990;46:219–29.

    PubMed  CAS  Google Scholar 

  20. Hummler E, Cole TJ, Blendy JA, Ganss R, Aguzzi A, Schmid W, Beermann F, Schutz G. Targeted mutation of the cAMP response element binding protein (CREB) gene: compensation within the CREB/ATF family of transcription factors. Proc Natl Acad Sci USA 1994;91:5647–51.

    Article  PubMed  CAS  Google Scholar 

  21. Bourtchuladze R, Frenguelli B, Blendy J, Cioffi D, Schutz G, Silva AJ. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. EMBO J 1994;79:59–68.

    CAS  Google Scholar 

  22. Maekawa T, Skura H, Kanes-Ishii C, Sudo T, Yoshimura T, Fujisawa J, Yoshida M, Ishii S. Leucine zipper structure of the protein CRE-BP1 binding to the cyclic AMP response element in brain. EMBO J 1989;8:2023–90.

    PubMed  CAS  Google Scholar 

  23. Hai T, Liu F, Coukos WJ, Green MR. Transcription ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers. Genes Dev 1989;3:2083–90.

    Article  PubMed  CAS  Google Scholar 

  24. Rehfuss RP, Walton KM, Loriaux MM, Goodman RH. The cAMP-regulated enhancer-binding protein ATF-1 activates transcription in response to cAMP-dependent protein kinase A. J Biol Chem 1991;266:18431–4.

    PubMed  CAS  Google Scholar 

  25. de Groot RP, Sassone-Corsi P. Hormonal control of gene expression: multiplicity and versatility of cyclic adenosine 3′,5′-monophosphate-responsive nuclear regulators. Mol Endocrinol 1993;7:145–53.

    Article  PubMed  Google Scholar 

  26. Foulkes NS, Mellstrom B, Benusiglio E, Sassone-Corsi P. Developmental switch of CREM function during spermatogenesis: from antagonist to transcriptional activator. Nature 1992;355:80–4.

    Article  PubMed  CAS  Google Scholar 

  27. Foulkes NS, Schlotter F, Pevet P, Sassone-Corsi P. Pituitary hormone FSH directs the CREM functional switch during spermatogenesis. Nature 1993; 362:264–7.

    Article  PubMed  CAS  Google Scholar 

  28. Delmas V, van der Hoorn F, Mellstrom B, Jegou B, Sassone-Corsi P. Induction of CREM activator proteins in spermatids: down-stream targets and implications for haploid germ cell differentiation. Mol Endocrinol 1993;7:1502–14.

    Article  PubMed  CAS  Google Scholar 

  29. Montminy MR, Sevarino KA, Wagner JA, Mandel G, Goodman RH. Identification of a cyclic AMP responsive element within the rat somatostatin gene. Proc Natl Acad Sci USA 1986;83:6682–6.

    Article  PubMed  CAS  Google Scholar 

  30. Deutsch PJ, Hoeffler JP, Jameson L, Habener JL. Cyclic AMP and phorbol ester-stimulated transcription mediated by similar DNA elements that bind distinct proteins. Proc Natl Acad Sci USA 1988;85:7922–6.

    Article  PubMed  CAS  Google Scholar 

  31. Deutsch PJ, Hoeffler JP, Jameson L, Lin JC, Habener JF. Structural determinants for transcriptional activation by cAMP-responsive DNA elements. J Biol Chem 1988;263:18466–72.

    PubMed  CAS  Google Scholar 

  32. Miller CP, Lin JC, Habener JF. Transcription of the rat glucagon gene by the cyclic AMP response element-binding protein CREB is modulated by adjacent CREB-associated proteins. Mol Cell Biol 1993;13:7080–90.

    PubMed  CAS  Google Scholar 

  33. Kistler MK, Sassone-Corsi P, Kistler WS. Identification of a functional cyclic adenosine 3′,5′-monophosphate response element in the 5′-flanking region of the gene for transition protein 1 (TP1), a basic chromosomal protein of mammalian spermatids. Biol Reprod 1994;51:1322–9.

    Article  PubMed  CAS  Google Scholar 

  34. Boshart M, Kluppel M, Schmidt A, Schütz G, Luckow B. Reporter constructs with low background activity utilizing the cat gene. Gene 1992;110:129–30.

    Article  PubMed  CAS  Google Scholar 

  35. Gorski K, Carnerro M, Schibler U. Tissue specific in vitro transcription from the mouse albumin promoter. Cell 1986;47:767–76.

    Article  PubMed  CAS  Google Scholar 

  36. Lichtsteiner S, Wuarin J, Schibler U. The interplay of DNA-binding proteins on the promoter of the mouse albumin gene. Cell 1987;51:963–73.

    Article  PubMed  CAS  Google Scholar 

  37. Oyen O, Myklebust F, Scott JD, Cadd GG, McKnight GS, Hansson V, Jahnsen T. Subunits of cyclic adenosine 3′,5′-monophosphate dependent protein kinase show differential and distinct expression patterns during germ cell differentiation: alternative polyadenylation in germ cells gives rise to unique smaller-sized mRNA species. Biol Reprod 1990;43:46–54.

    Article  PubMed  CAS  Google Scholar 

  38. Welch JE, Swinnen JV, O’Brien DA, Eddy EM, Conti M. Unique adenosine 3′, 5′ cyclic monophosphate phosphodiesterase messenger ribonucleic acids in rat spermatogenic cells: evidence for differential gene expression during spermatogenesis. Biol Reprod 1992;46:1027–33.

    Article  PubMed  CAS  Google Scholar 

  39. Onoda JM, Braun T, Wrenn SM Jr. Characterization of the purine-reactive site of the rat testis cytosolic adenylate cyclase. Biochem Pharmacol 1987;36:1907–12.

    Article  PubMed  CAS  Google Scholar 

  40. Kononen J, Paavola M, Penttila T-L, Parvinen M, Pelto-Huikko M. Stage-specific expression of pituitary adenylate cyclase-activating polypeptide (PACAP) mRNA in the rat seminiferous tubules. Endocrinology 1994;135:2291–4.

    Article  PubMed  CAS  Google Scholar 

  41. Heintz N. The regulation of histone gene expression during the cell cycle. Biochim Biophys Acta 1991;1088:327–39.

    PubMed  CAS  Google Scholar 

  42. Harris ME, Bohni R, Schneiderman MH, Ramamurthy L, Schümperli D, Marzluff WF. Regulation of histone mRNA in the unperturbed cell cycle: evidence suggesting control at two posttranscriptional steps. Mol Cell Biol 1991;11:2416–24.

    PubMed  CAS  Google Scholar 

  43. Stein GS, Stein JL, van Wijnen AJ, Lian JB. Regulation of histone gene expression. Curr Opin Cell Biol. 1992;4:166–73.

    Article  PubMed  CAS  Google Scholar 

  44. Brock WA, Trostle PK, Meistrich ML. Meiotic synthesis of testis histones in the rat. Proc Natl Acad Sci USA 1980;77:371–5.

    Article  PubMed  CAS  Google Scholar 

  45. Meistrich ML, Bucci LR, Trostle-Weige PK, Brock WR. Histone variants in rat spermatogonia and primary spermatocytes. Dev Biol 1985;112:230–40.

    Article  PubMed  CAS  Google Scholar 

  46. Coles LS, Wells JRE. An H1 histone gene-specific 5′ element and evolution of H1 and H5 genes. Nucleic Acids Res 1985:13:585–94.

    Article  PubMed  CAS  Google Scholar 

  47. Grimes SR, Wolfe SA, Koppel DA. Tissue-specific binding of testis nuclear proteins to a sequence element within the promoter of the testis-specific histone H1t gene. Arch Biochem Biophys 1992;296:402–9.

    Article  PubMed  CAS  Google Scholar 

  48. Wolfe SA, Grimes SR. Histone H1t: a tissue-specific model used to study transcriptional control and nuclear function during cellular differentiation. J Cell Biochem 1993;53:156–60.

    Article  PubMed  CAS  Google Scholar 

  49. Kremer EJ, Kistler WS. Analysis of the promoter for the gene encoding the testis-specific histone H1t in a somatic cell line: evidence for cell-cycle regulation and modulation by distant upstream sequences. Gene 1992;110:167–73.

    Article  PubMed  CAS  Google Scholar 

  50. Sawadogo M, Roeder RG. Factors involved in specific transcription by human RNA polymerase II: analysis by a rapid and quantitative in vitro assay. Proc Natl Acad Sci USA 1985;81:308–12.

    Google Scholar 

  51. Saffer JD, Jackson SP, Annarella MB. Developmental expression of Sp1 in the mouse. Mol Cell Biol 1991;11:2189–99.

    PubMed  CAS  Google Scholar 

  52. Imataka H, Sogawa K, Yasumoto K, Kikuchi Y, Sasano K, Kobayashi A, et al. Two regulatory proteins that bind to the basic transcription element (BTE), a GC box sequence in the promoter region of the rat P-450 1Al gene. EMBO J 1992;11:3663–71.

    PubMed  CAS  Google Scholar 

  53. St-Arnaud R, Moir JM. Wnt-1-inducing factor-1: a novel G/C box-binding transcription factor regulating the expression of wnt-1 during neuroectodermal differentiation. Mol Cel Biol 1993;13:1590–8.

    CAS  Google Scholar 

  54. van Wijnen AJ, Massung RF, Stein J, Stein G. Human H1 histone gene promoter CCAAT-box binding protein HiNF-B is a mosaic factor. Biochemistry 1988:27:6534–41.

    Article  PubMed  Google Scholar 

  55. Gallinari P, LaBella F, Heintz N. Characterization and purification of H1TF2, a novel CCAAT-binding protein that interacts with a histone H1 subtype specific consensus element. Mol Cell Biol 1989:9:1566–75.

    PubMed  CAS  Google Scholar 

  56. Martinelli R, Heintz N. H1TF2: the large subunit of a heterodimeric, glutamine rich CCAAT-binding transcription factor involved in histone H1 cell cycle regulation. Mol Cell Biol 1994:14:8322–32.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Kistler, M.K. et al. (1996). Promoter Analysis of Male Germ-Cell-Specific Genes: Nuclear Transition Protein-1 and Histone H1t. In: Desjardins, C. (eds) Cellular and Molecular Regulation of Testicular Cells. Serono Symposia USA Norwell, Massachusetts. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2374-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2374-0_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7519-0

  • Online ISBN: 978-1-4612-2374-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics