Phase-Amplitude Method Combined with Comparison Equation Technique Applied to an Important Special Problem

  • Per Olof Fröman
  • Anders Hökback
  • Nanny Fröman
Part of the Springer Tracts in Natural Philosophy book series (STPHI, volume 40)


We show how comparison equation technique can be used to overcome a difficulty that arises in the neighborhood of the origin in the numerical integration of a Schrödinger-like differential equation by means of the phase-amplitude method, when the effective potential behaves as 1/(4z 2) close to the origin. These results are applied to the calculation of the energy eigenvalues of a two-dimensional anharmonic oscillator.


Quantization Condition Energy Eigenvalue Schrodinger Equation Angular Momentum Quantum Number Comparison Equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Milne, W.E., Phys. Rev. 35 (1930), 863–867.ADSCrossRefGoogle Scholar
  2. [2]
    Wilson, H.A., Phys. Rev. 35 (1930), 948–956.ADSCrossRefGoogle Scholar
  3. [3]
    Young, L.A., Phys. Rev. 38 (1931), 1612–1614.ADSMATHCrossRefGoogle Scholar
  4. [4]
    Young, L.A., Phys. Rev. 39 (1932), 455–457.ADSMATHCrossRefGoogle Scholar
  5. [5]
    Wheeler, J.A., Phys. Rev. 52 (1937), 1123–1127.ADSCrossRefGoogle Scholar
  6. [6]
    Fröman, N., Fröman, P.O., and Linnaeus, S., Phase-integral formulas for the regular wave function when there are turning points close to a pole of the potential. This is Chapter 6 in the present monograph.Google Scholar
  7. [7]
    Fröman, N. and Fröman, P.O., Phase-integral approximation of arbitrary order generated from an unspecified base function. This is Chapter 1 in the present monograph.Google Scholar
  8. [8]
    Bell, S., Davidson, R., and Warsop, P.A., J. Phys. B3 (1970), 113–122.ADSGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1996

Authors and Affiliations

  • Per Olof Fröman
  • Anders Hökback
  • Nanny Fröman

There are no affiliations available

Personalised recommendations