Advertisement

Microstructural Aspects of Dynamic Failure

  • Anna K. Zurek
  • Marc André Meyers
Part of the High-Pressure Shock Compression of Condensed Matter book series (SHOCKWAVE)

Abstract

The term dynamic failure is used to distinguish special characteristics of failure of materials subjected to dynamic loading. The major feature that differentiates dynamic failure from quasi-static behavior is the presence of stress waves. These waves arise due to the applied load or due to the stresses released from a crack tip at fracture. Several phenomena are particularly relevant to dynamic failure, including:

1. Rapid crack propagation. The velocity of the crack can approach the shock wave velocity; the Rayleigh velocity is widely accepted as the limiting velocity, but it is rarely achieved in real materials, where the maximum values are closer to 1000 m/s [Ravi-Chandar and Knauss (1984a,b); Zehnder and Rosakis (1990)].

2. Fast nucleation, growth, and coalescence of voids. The rapid rate of loading makes the independent nucleation and growth of microvoids possible.

3. Shear band formation: localization of plastic deformation in a narrow region takes place when thermal softening is more pronounced than strain and strain-rate hardening combined. The adiabaticity, or quasi-adiabaticity of the process due to high-strain-rate deformation enhances the propensity for this response. Shear bands often lead to failure by separation of the two sides of material along the band.

Keywords

Shear Band Dynamic Fracture Void Growth Adiabatic Shear Band Void Volume Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aimone, CT., Meyers, M.A., and Mojtabai, N. In Rock Mechanics in Productivity and Design, (eds. C.H. Darding and M.M. Singh), SME-AIME, 979 (1984).Google Scholar
  2. Andrade, U., Meyers, M.A., Vecchio, K.S., and Chokshi, A.H. Acta Met. and Mat., 42, 3183 (1994).CrossRefGoogle Scholar
  3. Armstrong, R.W., Coffey, CS., and Elban, W.L. Acta Met., 30, 2111 (1992).CrossRefGoogle Scholar
  4. Asaro, R.J., and Needleman, A. Scripta Metallurgica, 18, 429 (1984).CrossRefGoogle Scholar
  5. Bai, Y. In Shock Waves and High-Strain-Rate Phenomena in Metals: Concepts and Applications, (M.A. Meyers and L.E. Murr, eds.) Plenum, New York, 227 (1981).Google Scholar
  6. Baichan, A.S. J. Appl. Phys. 34, 241 (1963).ADSCrossRefGoogle Scholar
  7. Banks, E.E. J.I.S.I., 206, 1022 (1968).Google Scholar
  8. Barker, L.M. and Hollenbach, R.E. (1974) J. Appl. Phys. 45, 4872 (1974).ADSGoogle Scholar
  9. Beatty, J.H., Meyer, L.W., Meyers, M.A., and Nemat-Nasser, S. in Shock-Wave and High-Strain-Rate Phenomena in Metals, (M.A. Meyers, L.E. Murr, K.P. Staudhammer eds.), Marcel Dekker, New York, p. 645 (1992).Google Scholar
  10. Bose, A., Sims, D., and German, R.M. Met. Trans., 19A, 487 (1988).Google Scholar
  11. Brace, W.F., and Bombolakis, E.G. J. Geophys. Res., 68, 3709 (1963).ADSCrossRefGoogle Scholar
  12. Broberg, K.B. Arch, für Fysik, 18, 159 (1960).MathSciNetGoogle Scholar
  13. Chang, S.N. and Meyers, M.A. Acta Met, 36, 1085 (1988).CrossRefGoogle Scholar
  14. Chojnowski, E.A. and McG. Tegart, W.J. Metals Science Journal, 1968, 2, 14 (1968).CrossRefGoogle Scholar
  15. Christy, S., Pak, H.-r., and Meyers, M.A. In Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena, (eds. L.E. Murr, K.P. Staudhammer, and M.A. Meyers), Marcel Dekker, New York, p. 835 (1986).Google Scholar
  16. Clifton, R.J. Material Response to Ultra High Loading Rates, Report No. NMAB-356, National Materials Advisory Board, NAS, Washington, Chapter 8, 1979.Google Scholar
  17. Clifton, R.J., Duffy, J., Hartley, K.A., and Shawki, T.G. Scripta Metallurgica, 18, 443 (1984).CrossRefGoogle Scholar
  18. Craggs, J.W. J. Mech. Phys. Sol., 8, 66 (1960).MathSciNetADSCrossRefMATHGoogle Scholar
  19. Curran, D.R. In Shock waves and Mechanical Properties of Solids, (J.J. Burke and V. Weiss, eds.), Syracuse University Press, Syracuse New York, p. 121, 1971.Google Scholar
  20. Curran, D.R. and Seaman, L. In Shock Waves in Condensed Matter (Y.M. Gupta, ed.), Plenum Press, p. 315, 1986.Google Scholar
  21. Curran, D.R., Seaman, L., and Shockey, D.A. Physics Reports, 147, 253 (1987).ADSCrossRefGoogle Scholar
  22. Derep, J.L. Acta Metall, 35, No. 6, 1245 (1987).CrossRefGoogle Scholar
  23. Dremin, A.N., Molodets, A.M., Melkumov, A.I., and Kolesnikov, A.V. In Shock-Wave and High-Strain-Rate Phenomena in Materials, (eds. M.A. Meyers, L.E. Murr and K.P. Staudhammer), Marcel Decker, New York, 751 (1992).Google Scholar
  24. Duvall, G.E. and Fowles, G.R. In High Pressure Physics and Chemistry, (edited by R.S. Bradley), Academic Press, New York, 2, 209 (1963).Google Scholar
  25. Erkman, J.O. J. Appl. Phys., 31, 939 (1961).ADSCrossRefGoogle Scholar
  26. Freund, L.B. J. Mech. Phys. Sol., 20, 129 and 141 (1972).MathSciNetADSCrossRefGoogle Scholar
  27. Freund, L.B. J. Mech. Phys. Sol., 21, 47 (1973).ADSCrossRefMATHGoogle Scholar
  28. Freund, L.B. Int. J. Engn. Sci., 12, 179 (1974).CrossRefGoogle Scholar
  29. Freund, L.B. Dynamic Fracture Mechanics, Cambridge University Press, Cambridge, England (1990).CrossRefMATHGoogle Scholar
  30. Glenn, R.C. and Leslie, W.C. Met. Trans., 2, 2945 (1971).CrossRefGoogle Scholar
  31. Goodier, N. J. Appl. Mech., 1, 39 (1933).Google Scholar
  32. Gourdin, W.H. In Proc. of Intl. Conf. on Impact Loading and Dynamic behavior of Materials, Bremen, FRG (1987).Google Scholar
  33. Grady, D.E. J. Geophys. Res., 82-B2, 913 (1980).ADSCrossRefGoogle Scholar
  34. Grady, D.E. Mechanics of Materials. In press.Google Scholar
  35. Gray, G.T. In High-Pressure Shock Compression of Solids, (J.R. Asay and M. Shahinpoor eds.) Springer-Verlag, New York. In press.Google Scholar
  36. Grebe, H.A., Pak, H.-r., and Meyers, M.A. Met. Trans., 16A, 761 (1985).Google Scholar
  37. Hartley, K.A., Duffy, J., and Hawley, R.H. Mechan. Phys. Solids, 35, No. 3, 283 (1987).ADSCrossRefGoogle Scholar
  38. Hatherly, M. and Malin, A.S. Scipta Metallurgica, 18, 449 (1984).CrossRefGoogle Scholar
  39. Hirano, K-I. Trans. AIME, 227, 950 (1963).Google Scholar
  40. Horii, H. and Nemat-Nasser, S. Trans. Roy. Soc. Lond. 319, 337 (1986).ADSCrossRefMATHGoogle Scholar
  41. Ivanov, A.G. and Novikov, S.A. J. Exp. Theor. Phys. (USSR), 40, 1880 (1961).Google Scholar
  42. Johnson, J.N. J. Appl. Phys. 52(4), 2812 (1981).ADSCrossRefGoogle Scholar
  43. Kanel, G.I., Rasorenov, S.V., and Fortov, V.E. In Shock Wave and High-Strain-Rate Phenomena in Materials, (eds. M.A. Meyers, L.E. Murr, and K.P. Staudhammer), Marcel Dekker, New York 775 (1992).Google Scholar
  44. Krock, R.H. and Shepard, L.A. Trans. Metal. Soc. AIME. 227, 1127 (1963).Google Scholar
  45. Kuriyama, S., and Meyers, M.A. Met. Trans. A, 17A, 443 (1986).CrossRefGoogle Scholar
  46. Lankford, J. J. Mater. Sci., 12, 791 (1977).ADSCrossRefGoogle Scholar
  47. Lankford, J., Anderson, C.E. Jr., and Bodner, S.R. J. Mat. Sci. Lett. 7, 1355 (1988).CrossRefGoogle Scholar
  48. Leslie, W.C. In Metallurgical Effects at High Strain Rates (R.W. Rohde, B.M. Butcher, J.R. Holland and C.H. Karnes, eds.) Plenum Press, New York, 1981.Google Scholar
  49. Louro, L.H.L. and Meyers, M.A. J. Math. Sci., 24, 2516 (1989).ADSCrossRefGoogle Scholar
  50. Louro, L.H.L. and Meyers, M.A. In Shock Compression of Condensed Matter—1989, eds. S.C. Schmidt, J.H. Johnson, and L.W. Davison. Elsevier, New York, 465, 1990.Google Scholar
  51. Marchand, A. and Duffy, J. An Experimental Study of the Formation Process of Adiabatic Shear Bands in a Structural Steel,” Brown University Report, April, 1987.Google Scholar
  52. Mescall, J.F. and Rogers, H. MLT TR 89–104, U.S. Army Materials Technology Laboratory Report, 1989.Google Scholar
  53. Meunier, Y., Roux, R., and Moureaud, J. In Shock-Wave and High-Strain-Rate Phenomena in Metals (M.A. Meyers, L.E. Murr, K.P. Staudhammer eds.), Marcel Dekker, New York, p. 637, 1992.Google Scholar
  54. Meyer, L.W., Kunze, H.-D., and Staskewitsch, E. Proc. Seventh Internl. Ballistic Symposium, The Hague-Netherlands, p. 289, 1983.Google Scholar
  55. Meyers, M.A. Dynamic Behavior of Materials, J. Wiley, New York, 1994.CrossRefMATHGoogle Scholar
  56. Meyers, M.A. and Aimone, C.T. Dynamic Fracture (Spalling) of Metals, In Progress in Materials Science, J.W. Christian, P. Haasen, T.B. Massalski, eds. Pergamon Press, 28, 1983.Google Scholar
  57. Meyers, M.A. and Chawla, K.K. Mechanical Metallurgy. Principals and Applications, Prentice-Hall, Englewood Cliffs, New Jersey, p. 510, 1984.Google Scholar
  58. Meyers, M.A. and Guimaraes, J.R.C. Mat. Sci. Eng., 24, 289 (1971).CrossRefGoogle Scholar
  59. Meyers, M.A., Meyer, L.W., Vecchio, K.S., and Andrade, U. J. Physique IV, Coll. C1, 1, C3-11(1991).Google Scholar
  60. Meyers, M.A. and Pak, H.-r. Acta Met., 34, 2493 (1986).CrossRefGoogle Scholar
  61. Meyers, M.A., Sarzeto, C, and Hsu, C.-Y. Met. Trans., 11A, 1737 (1980).Google Scholar
  62. Meyers, M.A., Subhash, G., Kad, B., and Prasad, L. Mechanics of Materials, 17, 175 (1994).CrossRefGoogle Scholar
  63. Meyers, M.A. and Wittman, C.L. Met. Trans., 21A, 3153 (1990).Google Scholar
  64. Molinari, A. and Clifton, R.J. C.R. Acad. Sci. Paris, 296 (1983).Google Scholar
  65. Murr, L.E. In Shock Waves and High-Strain-Rate Phenomena in Metals, M.A. Meyers and L.E. Murr, eds.), Plenum Press, New York, p. 607, 1981.Google Scholar
  66. Nesterenko, V.F., Meyers, M.A., and Cheng, H.C., “Shear Localization in High-Strain-Rate Deformation of Granular Alumina”, submitted for publication (1995).Google Scholar
  67. Rabin, H.B. and German, R.M. Met. Trans., 19A, 1523 (1988).Google Scholar
  68. Ravi-Chandar K. and Knauss W.G. Intl. J. Fracture, 25, 247 (1984a).CrossRefGoogle Scholar
  69. Ravi-Chandar K. and Knauss W.G. Intl. J. Fracture, 26, 65 (1984b).CrossRefGoogle Scholar
  70. Robbins, J.L., Shepard, O.C., and Sherby, O.D. J. Iron Steel Institute, 202, 804 (1964).Google Scholar
  71. Rogers, H.C. Materials Behavior Under High Stress and Ultra-High Loading Rates, J. Mescall and V. Weiss eds., Plenum Press, New York and London, p. 101, 1983.Google Scholar
  72. Seaman, L., Curran, D.R., Erlich, D.C., Cooper, T., and Dullum, O. Journal De Physique, 46, 273 (1985).Google Scholar
  73. Stevens, A.L., Davison, L., and Warren, W.E. J. Appl. Phys., 43, 4992 (1972).Google Scholar
  74. Tang, N.Y., Messen, P., Pick, R.J., and Worsick, M.J. Mat. Sci. and Eng., A131, 153 (1991).Google Scholar
  75. Teirlinck D., Zok, F., Embury, J.D., and Ashby, M.F. Acta Met., 36, 1213 (1988).CrossRefGoogle Scholar
  76. Thadhani, N.N. and Meyers, M.A. Acta Met., 34, 1625 (1986).CrossRefGoogle Scholar
  77. Thornton, P.A. and Heiser, F.A. Met. Trans., 2, 1496 (1971).Google Scholar
  78. Uvira, J.L., Clay, D.B., Worthington, P.J., and Embury, J.D. Canadian Metallurgical Quarterly, 11, 439 (1972).Google Scholar
  79. Wingrove, A.L. J. Aust. Inst. Met., 16, 67 (1971).Google Scholar
  80. Wittman, C.L., Meyers, M.A., and Pak, H-R. Met. Trans., 21A, 707 (1990).Google Scholar
  81. Wright, W.T. J. Mech. Phys. Sol., 35, 269 (1987).ADSCrossRefMATHGoogle Scholar
  82. Zehnder, A.T. and Rosakis, A.J. Intl. J. Fracture, 43, 271 (1990).CrossRefGoogle Scholar
  83. Zener, C. and Hollomon, J.H. J. Appl. Phys., 15, 22 (1944).ADSCrossRefGoogle Scholar
  84. Zurek, A.K. The Study of Dynamic Fracture During Armor-Penetrator Interaction, Los Alamos Report, LA-11719-MS (1989).Google Scholar
  85. Zurek, A.K. Met Trans. A, 25, 2483 (1994).CrossRefGoogle Scholar
  86. Zurek, A.K. Unpublished research, 1993.Google Scholar
  87. Zurek, A.K., Follansbee, P.S., and Hack, J. Met. Trans., 21A, 431 (1990).Google Scholar
  88. Zurek, A.K., Frantz, Ch. E., and Gray, G.T. In Shock-Wave and High-Strain-Rate Phenomena in Metals, M.A. Meyers, L.E. Murr, K.P. Staudhammer eds., Marcel Dekker, New York, p. 759, 1992.Google Scholar
  89. Zurek, A.K. and Gray, G.T. J. Physique IV, 1, 631 (1991).Google Scholar
  90. Zurek, A.K., Johnson, J.N., and Frantz, Ch. E. J. Physique, 49(3/9), 269 (1988).Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1996

Authors and Affiliations

  • Anna K. Zurek
  • Marc André Meyers

There are no affiliations available

Personalised recommendations