Advertisement

Relating Ground Water and Sediment Chemistry to Microbial Characterization at a BTEX-Contaminated Site

  • S. M. Pfiffner
  • A. V. Palumbo
  • T. Gibson
  • D. B. Ringelberg
  • J. F. McCarthy
Chapter
Part of the Applied Biochemistry and Biotechnology book series (ABAB, volume 63-65)

Abstract

The National Center for Manufacturing Science is investigating bioremediation of petroleum hydrocarbon at a site near Belleville, MI. As part of this study, we examined the microbial communities to help elucidate biodegradative processes currently active at the site. We observed high densities of aerobic hydrocarbon degraders and denitrifiers in the less-contaminated sediments. Low densities of iron and sulfate reducers were measured in the same sediments. In contrast, the highly contaminated sediments showed low densities of aerobic hydrocarbon degraders and denitrifiers, and high densities of iron and sulfate reducers. Methanogens were also found in these highly contaminated sediments. These contaminated sediments also showed a higher biomass, by the phospholipid fatty acids, and greater ratios of phospholipid fatty acids, which indicate stress within the microbial community. Aquifer chemistry analyses indicated that the highly contaminated area was more reduced and had lower sulfate than the less-contaminated area. These conditions suggest that the subsurface environment at the highly contaminated area had progressed into sulfate reduction and methanogenesis. The less-contaminated area, although less reduced, also appeared to be progressing into primarily iron- and sulfate-reducing microbial communities. The proposed treatment to stimulate bioremediation includes addition of oxygen and nitrate to the subsurface. Ground water chemistry and microbial analyses revealed significant differences that resulted from the injection of dissolved oxygen and nitrate. These differences included an increase in Eh, small decrease in pH, and large decreases in BTEX, dissolved iron, and sulfate concentrations at the injection well. Injected nitrate was rapidly utilized by the subsurface microbial communities, and significant nitrite amounts were observed in the injection well and in nearby down-gradient observation wells. Microbial and molecular analyses indicated an increase in denitrifying bacteria after nitrate injection. The activity and population of denitrifying bacteria were significantly increased at the injection well relative to a down-gradient well for as long as 2 mo after the nitrate injection ended.

Index Entries

Microbial characterization BTEX or petroleum hydrocarbon bioremediation subsurface ground water oxygen injection nitrate injection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aelion, C. M. and Bradley, P. M. (1991), Appl. Environ. Microbiol. 57, 57–63.Google Scholar
  2. 2.
    Bregnard, T. P-A., Hohener, P., Haner, A., and Aeyer, J. (1996), Environ. Toxicol. Chem. 15 299–307.CrossRefGoogle Scholar
  3. 3.
    Siegrist, R. L., Phelps, T. J., Korte, N. E., Pickering, D. A., Mackowski, R., and Cooper, L. W. (1994), Appl. Biochem. Bioeng. 45 757–773.Google Scholar
  4. 4.
    Phelps, T. J., Siegrist, R. L., Korte, N. E., Pickering, D. A., Strong-Gunderson, J., Palumbo, A. V., Walker, J. F., Morrissey, C. M., and Mackowski, R. (1994), Appl. Biochem. Biotechnol. 45, 835–845.CrossRefGoogle Scholar
  5. 5.
    Long, S. C., Aelion, C. M., Dobbins, D. C., and Pfaender, F. K. (1995), Microbiol. Ecol. 30 297–307.CrossRefGoogle Scholar
  6. 6.
    Zhou, E., and Crawford, R. L. (1995), Biodegradation 6127–140.CrossRefGoogle Scholar
  7. 7.
    Phelps, T. J., Pfiffner, S. M., Sargent, K. A., and White, D. C. (1994), Microbiol. Ecol. 28 351–364.CrossRefGoogle Scholar
  8. 8.
    Palumbo, A. V., Scarborough, S. P., Pfiffner, S. M., and Phelps, T. J. (1995), Appl. Biochem. Biotechnol. 55/56 635–647.CrossRefGoogle Scholar
  9. 9.
    Borden, R. C., Gomez, C. A., and Becker, M. T. (1995), Ground Water 33180–189.CrossRefGoogle Scholar
  10. 10.
    Wiedemeier, T. H., Swanson, M. A., Wilson, J. T., Kampbell, D. H., Miller, R. N., and Hansen, J. E. (1995), in Intrinsic Bioremediation, Hinchee, R. E., Wilson, J. T., Downey, D. C., eds., Battelle, Columbus, OH, pp. 31–51.Google Scholar
  11. 11.
    Gibson, T. L., Abdul, S. A., and Chalmer, P. D., (1996), Annual Conference for Petroleum Hydrocarbons and Organic Chemicals in Groundwater. National Groundwater Association, Houston, TX, Nov. 13–15.Google Scholar
  12. 12.
    Pfiffner, S. M., Phelps, T. J., and Palumbo, A. V. (1995), in Bioremediation of Chlorinated Solvents, Hinchee, R. E., Leeson, A., and Semprini, L., eds., Battelle, Columbus, OH, pp. 263–271.Google Scholar
  13. 13.
    Fries, M. R., Zhou, J., Chee-Sanford, J, and Tiedje, J. M. (1994), Appl. Environ. Microbiol. 60 2802–2810.Google Scholar
  14. 14.
    Lovley, D. R., Chapelle, F. H., and Phillips, E. J. P. (1990), Geology 18 954–957.CrossRefGoogle Scholar
  15. 15.
    Cullimore, D. R. (1993), Practical Manual of Groundwater Microbiology, Lewis, Chelsea, MI.Google Scholar
  16. 16.
    White, D. C., Davis, W. M., Nickels, J. S., King, J. D., and Bobbie, R. J. (1979), Oceologia 40 51–62.CrossRefGoogle Scholar
  17. 17.
    Tunlid, A., Ringelberg, D. B., Phelps, T. J., Low, C., and White, D. C. (1989), J. Microbiol. Methods 10,139–153.CrossRefGoogle Scholar
  18. 18.
    Kieft, T. L., Ringelberg, D. B., and White, D. C. (1994), Appl. Environ. Microbiol. 60 3292–3299.Google Scholar
  19. 19.
    Nichols, P. D., Guckert, J. B., and White, D. C. (1986), J. Microbiol. Methods 5, 49–55.CrossRefGoogle Scholar
  20. 20.
    Kohring, L. L., Ringelberg, D. B., Devereux, R., Stahl, D., Mittelman, M., and White, D. C. (1994), FEMS Microbiol. Lett. 119 303–308.CrossRefGoogle Scholar
  21. 21.
    Vainshtein, M., Hippe, H., and Kroppenstedt, R. M. (1992), Syst. Appl. Microbiol. 15, 554–566.Google Scholar
  22. 22.
    Palumbo, A. V., Zhang, C., Phelps, T. J, and Jager, H. (1996). Abstracts of the 96th General Meeting of the American Society for Microbiology, p. 113.Google Scholar
  23. 23.
    Beller, H. R. and Reinhard, M. (1995), Microbiol. Ecol. 30,105–114.CrossRefGoogle Scholar
  24. 24.
    Ball, H. A. and Reinhard, M. (1996), Environ. Toxicol. Chem. 15114–122.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1997

Authors and Affiliations

  • S. M. Pfiffner
    • 1
  • A. V. Palumbo
    • 1
  • T. Gibson
    • 2
  • D. B. Ringelberg
    • 3
  • J. F. McCarthy
    • 1
  1. 1.Environmental Sciences DivisionOak Ridge National LaboratoryOak RidgeUSA
  2. 2.General Motors Research and Development CenterWarrenUSA
  3. 3.Center for Environmental BiotechnologyThe University of TennesseeKnoxvilleUSA

Personalised recommendations