Corn Steep Liquor as a Cost-Effective Nutrition Adjunct in High-Performance Zymomonas Ethanol Fermentations

  • Hugh G. Lawford
  • Joyce D. Rousseau
Part of the Applied Biochemistry and Biotechnology book series (ABAB, volume 63-65)


The ethanologenic bacterium Zymomonas mobilis has been demonstrated to possess several fermentation performance characteristics that are superior to yeast. In a recent survey conducted by the National Renewable Energy Laboratory (NREL), Zymomonas was selected as the most promising host for improvement by genetic engineering directed to pentose metabolism for the production of ethanol from lignocellulosic biomass and wastes. Minimization of costs associated with nutritional supplements and seed production is essential for economic large-scale production of fuel ethanol. Corn steep liquor (CSL) is a byproduct of corn wet-milling and has been used as a fermentation nutrient supplement in several different fermentations. This study employed pH-controlled batch fermenters to compare the growth and fermentation performance of Z. mobilis in glucose media with whole and clarified corn steep liquor as sole nutrient source, and to determine minimal amounts of CSL required to sustain high-performance fermentation.

It was concluded that CSL can be used as a cost-effective single-source nutrition adjunct for Zymomonas fermentations. Supplementation with inorganic nitrogen significantly reduced the requirement for CSL. Depending on the type of process and mode of operation, there can be a significant contribution of nutrients from the seed culture, and this would also reduce the requirement for CSL. Removal of the insolubles (40% of the total solids) from CSL did not detract significantly from its nutritional effectiveness. On an equal-volume basis, clarified CSL was 1.33 times more “effective” (in terms of cell mass yield and fermentation time) than whole CSL. For fermentations at sugar loading of >5% (w/v), the recommended level of supplementation with clarified CSL is 1.0% (v/v). Based on CSL at US $50/t, the cost associated with using clarified CSL at 1.0% (v/v) is 88¢/1000 L of medium and 5.3¢/gal of undenatured ethanol for fermentation of 10% (w/v) glucose. This cost compares favorably to estimates for using inorganic nutrients. The cost impact is reduced to 3.1¢ /gal if there is a byproduct credit for selling the insolubles as animal feed at a price of about US $100/t. Therefore, the disposition of the CSL insolubles can significantly impact the calculations of cost associated with the use of CSL as a nutritional adjunct in large-scale fermentations.

Index Entries

Zymomonas clarified corn steep liquor whole CSL nutrition ethanol economic impact cell yield high-performance fermentation insolubles defined medium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Keim, C. R. and Venkatasubramanian, K. (1989), TIBTECH, vol 7, Elsevier Science, UK, London, pp. 22–29.Google Scholar
  2. 2.
    Keim, C. R. (1983), Enzyme Microbiol. Technol. 5,103–114.CrossRefGoogle Scholar
  3. 3.
    Lynd, L. R. (1990), Appl. Biochem. Biotechnol. 24/25, 695–719.CrossRefGoogle Scholar
  4. 4.
    Lynd, L. R., Cushman, J. H., Nichols, R. J., and Wyman, C. E. (1991), Science 251, 1318–1323.CrossRefGoogle Scholar
  5. 5.
    Skoog, K. and Hahn-Hägerdal, B. (1988), Enzyme Microbiol. Technol. 10, 66–88.CrossRefGoogle Scholar
  6. 6.
    McMillan, J. D. (1994), in Enzymatic Conversion of Biomass for Fuels Production,Himmel, M. E., Baker, J. O., and Overend, R. A., eds., American Chemical Society, Washington, DC., ACS Symposium Series 566, pp. 411–437.CrossRefGoogle Scholar
  7. 7.
    Swings, J. and DeLey, J. (1977), Bacteriol. Rev. 41,1–46.Google Scholar
  8. 8.
    Montenecourt, B. S. (1985), in Biology of Industrial Microorganisms,Demain, A. L. and Simon, N. A., eds., Benjamin/Cummings, Meno Park, CA, pp. 216–287.Google Scholar
  9. 9.
    Baratti, J. C. and Bû Lock, J. D. (1986), Biotechnol. Adv. 4, 95–115.CrossRefGoogle Scholar
  10. 10.
    Rogers, P. L., Lee, K. J., Skotnicki, M. L., and Tribe, D. E. (1982), Adv. Biochem. Eng. 37–84.Google Scholar
  11. 11.
    Lawford, H. G. and Stevnsborg, N. (1986), Biotechnol. Bioeng. Symp. 17, 209–219.Google Scholar
  12. 12.
    Lawford, H. G. and Ruggiero, A. (1990), in Bioenergy (Proceedings 7th Canadian Bioenergy R&D Seminar), Hogan, E., ed., National Research Council of Canada, Ottawa, Canada, pp. 401–410.Google Scholar
  13. 13.
    Busche, R., Scott, C. D. Davison, B. H., and Lynd, L. R. (1992), Appl. Biochem. Biotechnol. 34/35, 395–417.CrossRefGoogle Scholar
  14. 14.
    Doelle, H. W., Kirk, L., Crittenden, R., Toh, H., and Doelle, M. (1993), Crit. Rev. Biotechnol. 13, 57–98.CrossRefGoogle Scholar
  15. 15.
    Lawford, H. G. (1988), Proceedings of VIII International Symposium on Alcohol Fuels, New Energy Development Organization, Tokyo, Japan, (November 13–16), pp. 21–28.Google Scholar
  16. 16.
    Picataggio, S. K., Zhang, M., and Finkelstein, M. (1994), in Enzymatic Conversion of Biomass for Fuels Production,M. E. Himmel, J. O. Baker, and R. A. Overend, eds., American Chemical Society, Washington, DC, ACS Symposium Series 566, pp. 342–362.CrossRefGoogle Scholar
  17. 17.
    Zhang, M., Franden, M. A., Newman, M., McMillan, J., Finkelstein, M., and Picataggio, S. K. (1995), Appl. Biochem. Biotechnol. 51/52 527–536.CrossRefGoogle Scholar
  18. 18.
    Lawford, H. G. (1988), Appl. Biochem. Biotechnol. 17, 203–211.CrossRefGoogle Scholar
  19. 19.
    Greasham, R. and Inamine, E. (1981), in Manual of Industrial Microbiology and Biotechnology, Demain, A. L. and Solomon, N. A, eds., American Society for Microbiology, Washington, DC, pp. 41–48.Google Scholar
  20. 20.
    Lynd, L. R., Elander, R. T., and Wyman, C. E. (1996), Appl. Biochem. Biotechnol. 57/58, 741–761.CrossRefGoogle Scholar
  21. 21.
    Belaïch, J. P. and Senez, J. C. (1965), J. Bacteriol. 89,1195–1200.Google Scholar
  22. 22.
    Belaïch, J. P., Belaïch, A., and Simonpietri, P. (1972), J. Gen. Microbiol. 70,179–185.Google Scholar
  23. 23.
    Lawford, H. G. and Stevnsborg, N. (1986), Biotechnol. Lett. 8, 345–350.CrossRefGoogle Scholar
  24. 24.
    Park, S. C., Kademi, A., and Baratti, J. C. (1993), Biotechnol. Lett. 15,1179–1184.CrossRefGoogle Scholar
  25. 25.
    Goodman, A. E., Rogers, P. L., and Skotnicki, M. L. (1982), Appl.Environ.Microbiol. 44, 496–498.Google Scholar
  26. 26.
    Fein, J. E., Charley, R. C., Hopkins, K. A., Lavers, B., and Lawford, H. G. (1983), Biotechnol. Lett. 5,1–6.Google Scholar
  27. 27.
    Nipkow, A., Beyeler, W., and Feichter, A. (1984), Appl. Microbiol. Biotechnol. 19, 237–240.CrossRefGoogle Scholar
  28. 28.
    Galani, I., Drainas, C., and Typas, M. A. (1985), Biotechnol. Lett. 7, 673–678.CrossRefGoogle Scholar
  29. 29.
    Anon (1975), “Properties and Uses of Feed Products from Corn Wet-Milling Operations.” Corn Refiners Association Inc., Washington, DC.Google Scholar
  30. 30.
    Lawford, H. G. and Rousseau, J. D. (1996), Appl. Biochem. Biotechnol. 57/58, 307–326.CrossRefGoogle Scholar
  31. 31.
    Lawford, H. G. (1988), in Canadian Power Alcohol Proceedings (CANPAC’88), Biomass Energy Institute of Canada, Winnipeg, Manitoba, pp. 245–251.Google Scholar
  32. 32.
    Beavan, M., Zawadzki, B., Droiniuk, R., Fein J. E., and Lawford, H. G. (1989), Appl.Biochem. Biotechnol. 20/21, 319–326.CrossRefGoogle Scholar
  33. 33.
    Davison, B. H. and Scott, C. D. (1988), Appl. Biochem. Biotechnol. 18, 19–34.CrossRefGoogle Scholar
  34. 34.
    Webb, O. F., Davison, B. H., Scott, T. C., and Scott, C. D. (1994), Appl. Biochem. Biotechnol. 51/52, 559–568.Google Scholar
  35. 35.
    Amartey, S. and Jeffries, T. W. (1994), Biotechnol. Lett. 16, 211–214.CrossRefGoogle Scholar
  36. 36.
    Kadam, K. L., Hayward, T. K., and Phillippidis, G. P. (1995), ASME Solar Eng. 1, 339–347.Google Scholar
  37. 37.
    Beall, D. S., Ingram, L. O., Ben-Bassat, A., Doran, J. B., Fowler, D. E., Hall, R. G., and Wood, R. E. (1992), Biotechnol. Lett. 14, 857–862.CrossRefGoogle Scholar
  38. 38.
    Barbosa, M. de F. S., Beck, M. J., Fein, J. E., Potts, D., and Ingram, L. O. (1992), Appl.Environ.Microbiol. 58,1182–1184.Google Scholar
  39. 39.
    Grethlein, H. E. and Dill, T. (1993), SCA No. 58–1935–2–050, Agricultural Research Service, USDA, Philadelphia, PA.Google Scholar
  40. 40.
    Asghari, A., Bothast, R. J., Doran, J. B., and Ingram, L. O. (1996), J. Ind. Microbiol. 16, 42–47.CrossRefGoogle Scholar
  41. 41.
    Lawford, H. G., Rousseau, J. D., and McMillan, J.D. (1997), Appl. Biochem. Biotechnol. (18th Symp.), 63–65, 269.Google Scholar
  42. 42.
    Lawford, H. G., Holloway, P., and Ruggiero, A. (1988), Biotechnol. Lett. 10, 809–814.CrossRefGoogle Scholar
  43. 43.
    Lawford, H. G. and Ruggiero, A. (1990), Biotechnol. Appl. Biochem. 12, 206–211.Google Scholar
  44. 44.
    von Sivers, M., Zacchi, G., Olsson, L., and Hahn-Hägerdal, B. (1994), Biotechnol. Prog. 10, 555–560.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1997

Authors and Affiliations

  • Hugh G. Lawford
    • 1
  • Joyce D. Rousseau
    • 1
  1. 1.Bio-engineering Laboratory, Department of BiochemistryUniversity of TorontoTorontoCanada

Personalised recommendations