Advertisement

Expression of Ascaris suum Malic Enzyme in a Mutant Escherichia coli Allows Production of Succinic Acid from Glucose

  • Lucy Stols
  • Gopal Kulkarni
  • Ben G. Harris
  • Mark I. Donnelly
Chapter
Part of the Applied Biochemistry and Biotechnology book series (ABAB, volume 63-65)

Abstract

The malic enzyme gene of Ascaris suum was cloned into the vector pTRC99a in two forms encoding alternative amino-termini. The resulting plasmids, pMEA1 and pMEA2, were introduced into Escherichia coli NZN111, a strain that is unable to grow fermentatively because of inactivation of the genes encoding pyruvate dissimilation. Induction of pMEA1, which encodes the native animoterminus, gave better overexpression of malic enzyme, approx 12-fold compared to uninduced cells. Under the appropriate culture conditions, expression of malic enzyme allowed the fermentative dissimilation of glucose by NZN111. The major fermentation product formed in induced cultures was succinic acid.

Index Entries

Metabolic engineering succinic acid Escherichia coli malic enzyme Ascaris suum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jain, M. K., Datta, R., and Zeikus, J. G. (1989), in Bioprocess Engineering: The First Generation Ghose, T. K., ed., Norwood, Chichester, UK, pp. 366–389.Google Scholar
  2. 2.
    Clark, D. P. (1989), FEMS Microb. Rev. 63 223–234.CrossRefGoogle Scholar
  3. 3.
    Blackwood, A. C., Neish, A. C., and Ledingham, G. A. (1956), J. Bacteriol. 72 497–499.CrossRefGoogle Scholar
  4. 4.
    Millard, C. S., Chao, Y.-P., Liao, J. C., and Donnelly, M. I. (1996), Appl. Environ. Microbiol. 62 1808–1810.Google Scholar
  5. 5.
    Thauer, R. K., Jungermann, K., and Decker, K. (1977), Bacteriol. Rev. 41 100–180.Google Scholar
  6. 6.
    Murai, T., Tokushige, M., Nagai, J., and Katsuki, H. (1971), Biochem. Biophys. Res. Comm. 43 875–881.CrossRefGoogle Scholar
  7. 7.
    Murai, T., Tokushige, M., Nagai, J., and Katsuki, H. (1972), J. Biochem. 71 1015–1028.Google Scholar
  8. 8.
    Landsperger, W. J. and Harris, B. G. (1976), J. Biol. Chem. 251 3599–3602.Google Scholar
  9. 9.
    Takeo, K., Murai, T., Nagai, J., and Katsuki, H. (1967), Biochem. Biophys. Res. Comm. 29 717.CrossRefGoogle Scholar
  10. 10.
    Sanwal, B. D. (1970), J. Biol. Chem. 245 1212–1216.Google Scholar
  11. 11.
    Mallick, S., Harris, B. G., and Cook, P. F. (1991), J. Biol. Chem. 266 2732–2738.Google Scholar
  12. 12.
    Mat-Jan, F., Kiswar, A. Y., and Clark, D. P. (1989), J. Bacteriol. 171 342–348.Google Scholar
  13. 13.
    Boernke, W. E., Millard, C. S., Stevens, P. W., Kakar, S. N., Stevens, F. J., and Donnelly, M. I. (1995), Arch. Biochem. Biophys. 322 43–52.CrossRefGoogle Scholar
  14. 14.
    Kulkarni, G., Cook, P. F., and Harris, B. G. (1993), Arch. Biochem. Biophys. 300 231–237.CrossRefGoogle Scholar
  15. 15.
    Mahajan, S. K., Chu, C. C., Willis, D. K., Templin, A., and Clark, A. J. (1990), Genetics 125 261–273.Google Scholar
  16. 16.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989), Molecular Cloning: A Laboratory Manual,2nd ed., 2nd ed., Cold Spring Harbor Press, Cold Spring Harbor, NY.Google Scholar
  17. 17.
    Balch, W. and Wolfe, R. S. (1976), Appl. Environ. Microbiol. 32 781–791.Google Scholar

Copyright information

© Humana Press Inc. 1997

Authors and Affiliations

  • Lucy Stols
    • 1
  • Gopal Kulkarni
    • 2
  • Ben G. Harris
    • 2
  • Mark I. Donnelly
    • 1
  1. 1.Environmental Research DivisionArgonne National LaboratoryArgonneUSA
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of North TexasFort WorthUSA

Personalised recommendations