Skip to main content

Recent Developments in Modeling Shock Compression of Porous Materials

  • Chapter
High-Pressure Shock Compression of Solids IV

Part of the book series: High-Pressure Shock Compression of Condensed Matter ((SHOCKWAVE))

Abstract

During the past several decades, the response of porous materials to impact loading has been a research subject of considerable interest for applications such as shock wave attenuation [1–4], compaction-to-detonation ignition in energetic materials such as porous granular explosives [5–7], and, especially, dynamic consolidation and synthesis of high-performance materials [8–11]. The compaction and bonding of powders as well as the initiation or suppression of chemical reactions in the powders is most closely related to the local deformation processes and thermal histories. A thorough understanding of the shock wave processing of porous materials is needed in order to optimize the processing parameters, extend the technique to new material systems, and design fixtures to eliminate compact cracking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Herrmann, J. Appl. Phys. 40, pp. 2490–2499 (1969).

    Article  ADS  Google Scholar 

  2. M.M. Carroll and A.C. Holt, J. Appl. Phys. 43, pp.1626–1636 (1972).

    Article  ADS  Google Scholar 

  3. B.M. Butcher and C.H. Karnes, J. Appl. Phys. 40, pp. 2967–2976 (1969).

    Article  ADS  Google Scholar 

  4. R.R. Boade, J. Appl. Phys. 41, pp.4542–4551 (1970).

    Article  ADS  Google Scholar 

  5. M.R. Baer, J. Appl. Mech. 55, pp. 36–43 (1988).

    Article  ADS  Google Scholar 

  6. L.S. Bennett, Y. Horie, and M.M. Hwang, J. Appl. Phys. 76, pp. 3394–3402 (1994).

    Article  ADS  Google Scholar 

  7. D.S. Stewart, B.W. Asay, and K. Prasad, Phys. Fluids 6, pp. 2515–2534 (1994).

    Article  ADS  Google Scholar 

  8. V.D. Linse, Dynamic Compaction of Metal and Ceramic Powders, National Materials Advisory Board, NMAB-394, (U.S.) National Academy Press, Washington, DC (1983).

    Google Scholar 

  9. W.H. Gourdin, Prog. Mater. Sci. 30, pp. 39–80 (1986).

    Article  Google Scholar 

  10. N.N. Thadhani, Prog. Mater. Sci. 37, pp. 117–226 (1993).

    Article  Google Scholar 

  11. V.F. Nesternko, High-Rate Deformation of Heterogeneous Materials, Nauka, Novosibirsk (1992).

    Google Scholar 

  12. M.U. Anderson, R.A. Graham, G.T. Holman, in High-Pressure Science and Technology-1993 (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 1111–1114(1994).

    Google Scholar 

  13. M.B. Boslough and T.J. Ahrens, Rev. Sci. Instrum. 60, pp. 3711–3716 (1989).

    Article  ADS  Google Scholar 

  14. R.L. Williamson, J. Appl. Phys. 68, pp. 1287–1296 (1990).

    Article  ADS  Google Scholar 

  15. W. Tong and G. Ravichandran, J. Appl. Phys. 74, pp. 2425–2435 (1993).

    Article  ADS  Google Scholar 

  16. D.J. Benson, W. Tong, and G. Ravichandran, Model. Simul. Mater. Sci. Eng. (in press).

    Google Scholar 

  17. M.M. Carroll, Metall. Trans. 17A, pp. 1977–1984 (1986).

    Google Scholar 

  18. R.M. German, Powder Metallurgy Science, 2nd ed., Metal Powder Industries Federation, Princeton, NJ (1994).

    Google Scholar 

  19. K. Konopicky, Radex Rundschau 3, pp. 141–148 (1948).

    Google Scholar 

  20. P.C. Chou, Z. Ritman, and D. Liang, Mech. Mater. 17, pp. 295–305 (1994).

    Article  Google Scholar 

  21. C. Torre, Berg-Huttenmann. Monatsh. 93, pp. 62–67 (1948).

    Google Scholar 

  22. M.M. Carroll and KT. Kim, Powder Metall. 27, p. 153 (1984).

    Google Scholar 

  23. E. Voce, Metallurgica 51, pp. 219–226 (1955).

    Google Scholar 

  24. J.H. Palm, Appl. Sci. Res. A2, pp. 198–214 (1949).

    Article  Google Scholar 

  25. K.T. Kim and M.M. Carroll, Int. J. Plasticity 3, pp. 63–73 (1987).

    Article  Google Scholar 

  26. J.K. MacKenzie and R. Shuttleworth, Proc. Phys. Soc. 1362, pp. 833–852 (1949).

    Google Scholar 

  27. P. Murray, E.P. Rodgers, and J. Williams, Trans. Br. Ceram. Soc. 53, pp. 474–510 (1954).

    Google Scholar 

  28. D.S. Wilkinson and M.F. Ashby, Acta Metall. 23, pp. 1277–1285 (1975).

    Article  Google Scholar 

  29. M. Haghi and L. Anand, Intl. J. Plasticity 7, p. 123 (1991).

    Article  MATH  Google Scholar 

  30. R.W. Klopp, R.J. Clifton, and T.G. Shawki, Mech. Mater. 4, pp. 375–385 (1985).

    Article  Google Scholar 

  31. R.J. Clifton, Appl. Mech. Rev. 43, pp. s9–s22 (1990).

    Article  ADS  Google Scholar 

  32. W. Tong, R.J. Clifton, and S. Huang, J. Mech. Phys. Solids, 40, pp. 1251–1294 (1992).

    Article  ADS  Google Scholar 

  33. A.C. Holt, M.M. Carroll, and B.M. Butcher, in Pore Structure and Properties of Materials 5 (ed. S. Modry), Academia Prague, Prague, pp. D63–D76 (1974).

    Google Scholar 

  34. B.M. Butcher, M.M. Carroll, and A.C. Holt, J. Appl. Phys. 45, pp. 3864–3875 (1974).

    Article  ADS  Google Scholar 

  35. M.M. Carroll, K.T. Kim, and V.F. Nesterenko, J. Appl. Phys. 59, pp. 1962–1967 (1986).

    Article  ADS  Google Scholar 

  36. W. Tong and G. Ravichandran, Appl. Phys. Letts. 65, pp. 2783–2785 (1994).

    Article  ADS  Google Scholar 

  37. R.G. McQueen, S.P. Marsh, J.W. Taylor, J.N. Fritz, and W.J. Carter, in High Velocity Impact Phenomena (ed. R. Kinslow), Academic Press, New York, p. 293 (1970).

    Google Scholar 

  38. R.R. Boade, J. Appl. Phys. 39, pp. 5693–5702 (1968).

    Article  ADS  Google Scholar 

  39. G.A. Simons and H.H. Legner, J. Appl. Phys. 53, pp. 943–947 (1982).

    Article  ADS  Google Scholar 

  40. D.K. Dijken and J.Th.M. DeHosson, J. Appl. Phys. 75, pp. 809–813 (1994).

    Article  ADS  Google Scholar 

  41. M.M. Carroll and A.C. Holt, J. Appl. Phys. 43, pp. 759–761 (1972).

    Article  ADS  Google Scholar 

  42. R.K. Linde, L. Seaman, and D.N. Schmidt, J. Appl. Phys. 43, pp. 3367–3375 (1972).

    Article  ADS  Google Scholar 

  43. D. Raybould and T.Z. Blazynski, in Materials at High Strain Rates (ed. T.Z. Blazynski), Elsevier Applied Science, New York, p.71 (1987).

    Google Scholar 

  44. A.P. Mann, D.I. Pullin, M.N. Macrossan, and N.W. Page, J. Appl. Phys. 70, pp. 3281–3290 (1991).

    Article  ADS  Google Scholar 

  45. G.T. Holman, Jr., R.A. Graham, and M.U. Anderson, in High-Pressure Science and Technology-1993 (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 1119–1122 (1994).

    Google Scholar 

  46. A. Ferreira and M.A. Meyers, in Shock-Wave and High-Strain-Rate Phenomena in Materials (eds. M.A. Meyers, L.E. Murr, and K.P. Staudhammer), Marcel Dekker, New York, pp. 361–370 (1991).

    Google Scholar 

  47. R.B. Shwartz, P. Kasiraj, T. Vreeland Jr., and T.J. Ahrens, Acta Metall. 32, pp. 1243–1252 (1984).

    Article  Google Scholar 

  48. G.I. Taylor and M.A. Quinney, Proc. Roy. Soc. London A143, p. 307 (1934).

    ADS  Google Scholar 

  49. J.J Mason, A.J. Rosakis, and G. Ravichandran, Mech. Mater. 17, pp. 135–145 (1994).

    Article  Google Scholar 

  50. G.E. Duvall and S.M. Taylor, J. Comp. Mater. 5, p. 130 (1971).

    Article  Google Scholar 

  51. B.R. Krueger and T. Vreeland, Jr., J. Appl. Phys. 69, pp. 710–716 (1991).

    Article  ADS  Google Scholar 

  52. W. Tong, G. Ravichandran, T. Christman, and T. Vreeland Jr., Acta Metall. Mater. 43, pp. 235–250 (1995).

    Google Scholar 

  53. K.S. Vecchio, L.H. Yu, and M.A. Meyers, Acta Metall. Mater. 42, pp. 701–714 (1994).

    Article  Google Scholar 

  54. H. Kunishige et al., Report of Research Laboratory of Engineering Materials 15, Tokyo Institute of Technology, Tokyo (1990).

    Google Scholar 

  55. N.N. Thadhani, Adv. Mater. Manuf. Proc. 3, pp. 493–549 (1988).

    Article  Google Scholar 

  56. L.H. Yu, M.A. Meyers, and N.N. Thadhani, J. Mater. Res. 5, pp. 302–312 (1990).

    Article  ADS  MATH  Google Scholar 

  57. Y. Horie, R.A. Graham, and I.K. Simonsen, Mater. Lett. 3, p. 354 (1985).

    Article  Google Scholar 

  58. W. Yang, G.M. Bond, H. Tan, T.J. Ahrens, and G. Liu, J. Mater. Res. 7, pp. 1501–1518 (1992).

    Article  ADS  Google Scholar 

  59. K. Kondo and S. Sawai, J. Am. Ceram. Soc. 73, pp. 1983–1991 (1990).

    Article  Google Scholar 

  60. B.R. Krueger, A.H. Mutz, and T. Vreeland, Jr., Metall. Trans. A23, pp. 55–58 (1992).

    Google Scholar 

  61. M. Jain and T. Christman, Acta Metall. Mater. 40, p. 2490 (1994).

    Google Scholar 

  62. W. Tong and G. Ravichandran, in Wave Propagation and Emerging Technologies, AMD-Vol. 188 (eds. V.K. Kinra, R.J. Clifton, and G.C. Johnson), American Society of Mechanical Engineers, New York (1964).

    Google Scholar 

  63. J.E. Flinn, R.L. Williamson, R.A. Berry, R.N. Wright, Y.M. Gupta, and M. Williams, J. Appl. Phys. 64, pp. 1446–1456 (1988).

    Article  ADS  Google Scholar 

  64. D.J. Benson, Comp. Methods Appl. Methods Eng. 99, pp.235–394 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  65. D.J. Benson, Model. Simul. Mater. Sci. Eng. 2, pp. 535–550 (1994).

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Tong, W., Ravichandran, G. (1997). Recent Developments in Modeling Shock Compression of Porous Materials. In: Davison, L., Horie, Y., Shahinpoor, M. (eds) High-Pressure Shock Compression of Solids IV. High-Pressure Shock Compression of Condensed Matter. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2292-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2292-7_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7489-6

  • Online ISBN: 978-1-4612-2292-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics