Discrete Meso-Element Modeling of Shock Processes in Powders

  • Z. P. Tang
  • Y. Horie
  • S. G. Psakhie
Part of the High-Pressure Shock Compression of Condensed Matter book series (SHOCKWAVE)

Abstract

In recent years, numerical simulation has been used to study the shock loading of powders and has begun to play an increasingly important role in understanding the phenomena as well as the underlying physical mechanisms. However, most numerical work has been carried out using continuum physics. For example, Flinn et al. [1,2] calculated the compaction of 304 stainless steel powders using an Eulerian hydrocode, CTH. Benson et al. used another hydrocode to investigate copper powders [3,4]. Both the works of Williamson et al. and Benson and Nellis have been seminal in elucidating such basic mechanisms as pore collapse, localized plastic flow, and temperature distribution during shock loading. The model of Benson is the first attempt to evaluate a realistic assembly of powder particles in terms of size and arrangement. A summary of his most recent work is found in Chap. 9 of this volume.

Keywords

Nickel Propa Brittle Explosive Compaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.E. Flinn, et al., J. Appl. Phys. 64, p. 1446 (1988).ADSCrossRefGoogle Scholar
  2. [2]
    R.L. Williamson, J. Appl. Phys. 68, p. 1287 (1990).ADSCrossRefGoogle Scholar
  3. [3]
    D.J. Benson and W.J. Nellis, Appl. Phys. Lett. 65, p. 418 (1994).ADSCrossRefGoogle Scholar
  4. [4]
    D.J. Benson and W.J. Nellis, in High-Pressure Science and Technology-1993 (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, p. 1243 (1994).Google Scholar
  5. [5]
    S.I. Negreskul, S.G. Psakhie, and S.Y. Korostelev, in Shock Compression of Condensed Matter-1989 (eds. S.C. Schmidt, J.N. Johnson, and L.W. Davison), Elsevier, Amsterdam, p. 233 (1990).Google Scholar
  6. [6]
    Y. Horie, Z.P. Tang, and S.G. Psakhie, “Computer simulation of shock compaction of powders by element dynamics”, TMS Materials Week’94, Chicago, Oct. 3–6, 1994.Google Scholar
  7. [7]
    Z.P. Tang, Y. Horie, and S.G. Psakhie, Discrete meso-element dynamic simulation of shock response of reactive, porous solids, in Shock Compression of Condensed Matter-1995, Seattle, Aug. 13–18, 1995.Google Scholar
  8. [8]
    R.E. Goodman, R.L. Taylor, and T.L. Brekke, J. Soil Mech. Found. Div., Proc. ASCE 94, p. 637 (1968).Google Scholar
  9. [9]
    P.A. Cundall, in Proc. Symp. Int. Soc. Rock Mech., (1971), II, Art. 8.Google Scholar
  10. [10]
    P.A. Cundall and O.D.L. Strack, Geotechnique 9, p. 47 (1979).Google Scholar
  11. [11]
    R. Dobry and T. Ng, Eng. Comp. 9, p. 129 (1992).CrossRefGoogle Scholar
  12. [12]
    D. Greenspan, Quasimolecular Modeling, World Scientific, Singapore (1991).CrossRefGoogle Scholar
  13. [13]
    T. Kawai and Y. Toi, J. Soc. Naval Arch. Japan 141, p. 1013 (1977).Google Scholar
  14. [14]
    L.B. Lucy, Astron. J. 82, p. 1013 (1971).ADSCrossRefGoogle Scholar
  15. [15]
    J.J. Monaghan and R.A. Gingold, J. Comput. Phys. 52, p. 374 (1983).ADSMATHCrossRefGoogle Scholar
  16. [16]
    Y.C. Fung, A First Course in Continuum Mechanics, Prentice-Hall, Englewood Cliffs, NJ, p. 3, (1994).Google Scholar
  17. [17]
    M. Satake, in Mechanics of Granular Materials, International Society for Soil Mechanics and Foundation Engineering, Rio De Janeiro, p. 3 (1989).Google Scholar
  18. [18]
    L. Knopott, in High Pressure Physics and Chemistry, Vol. 1 (ed. R.S. Bradley), Academic, New York. (1963).Google Scholar
  19. [19]
    R.A. Graham and N.N Thadhani, in Shock Waves in Materials Science (ed. A.B. Sawaoka), Springer-Verlag, Tokyo, p. 35 (1993).Google Scholar
  20. [20]
    Y. Horie and A.B. Sawaoka, Shock Compression Chemistry of Materials, KTK Scientific Publishers, Tokyo, p. 160 (1993).Google Scholar
  21. [21]
    S.V. Zemsky, Y.A. Ryabchikov, and G.N Epshteyn, Phys. Met. Metall. 46, p. 171 (1979).Google Scholar
  22. [22]
    A.C. Ruoff, J. Appl. Phys. 38, p. 3999 (1967).ADSCrossRefGoogle Scholar
  23. [23]
    L.M. Taylor and D.S Preece, Eng. Comput. 9, p. 243 (1992).CrossRefGoogle Scholar
  24. [24]
    S.S. Batsanov, Russ. Chem. Rev. 55, p. 579 (1986).CrossRefGoogle Scholar
  25. [25]
    B. Morosin, in High Pressure Explosive Processing of Ceramics (eds. R.A. Graham and A.B. Sawaoka), Trans Tech Publication, Andermanndorf, Switzerland, p. 283 (1987).Google Scholar
  26. [26]
    L.S. Bennett, Y. Horie, and M.M. Hwang, J. Appl. Phys. 76, p. 3394 (1994).ADSCrossRefGoogle Scholar
  27. [27]
    S.A. Sheffield et al., in High Pressure Science & Technology-1993 (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross) American Institute of Physics, New York, pp. 1377–1381 (1994).Google Scholar
  28. [28]
    M.U. Anderson and R.A. Graham, private communication.Google Scholar
  29. [29]
    Y. Horie, in Shock Waves in Materials Science (ed. A.B. Sawaoka), Springer-Verlag, Tokyo, p. 74. (1993).Google Scholar
  30. [30]
    C.S. Chang and J. Gao, Int. J. Non-Linear Mech. 30, p. 111 (1995).ADSMATHCrossRefGoogle Scholar
  31. [31]
    Z.P. Tang and Y. Horie, J. Appl. Phys. (to be submitted).Google Scholar
  32. [32]
    Z.P. Tang, Y. Horie, and S.G. Psakhie, Technical Report, North Carolina State University (1995).Google Scholar
  33. [33]
    S. Nemat-Nasser and M. Mehrabadi, in Mechanics of Granular Materials (eds. J.T. Jenkins and M. Satake), Elsevier, Amsterdam, p. 1 (1983).Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1997

Authors and Affiliations

  • Z. P. Tang
  • Y. Horie
  • S. G. Psakhie

There are no affiliations available

Personalised recommendations