Skip to main content

Environmental Assessment of the Alkanolamines

  • Chapter

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 149))

Abstract

The alkanolamine product family consists of the ethanol-, isopropanol-, and butanol-substituted amines. The alkanolamines are bifunctional molecules having both amino and alcohol functional groups. As a result, they undergo a wide variety of reactions common to amines and alcohols. Because of these physicochemical characteristics, the alkanolamines are used in a wide variety of applications, including surfactants, cosmetics, toiletry products, metal working fluids, textile chemicals, gas conditioning chemicals, agricultural chemical intermediates, and cement grinding aids. Due to this wide range of uses and applications, there is a need to understand the fate and effects of these compounds in the environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander HC, Batchelder TL (1975) The pollution evaluation of compounds. The Dow Chemical Company, Midland, MI (unpublished report).

    Google Scholar 

  • Alexander HC, McCarty WM, Bartlett EA, Syverud AN (1982) Aqueous odor and taste threshold values of industrial chemicals. Am Water Works Assoc J 74(11): 595–599.

    CAS  Google Scholar 

  • Alexander M (1985) Biodegradation of organic chemicals. Environ Sci Technol 18: 106–111.

    Article  Google Scholar 

  • Anderson G (1979) Nitrosamines in cosmetics. J Cosmet Toilet 94:65–68.

    CAS  Google Scholar 

  • Apostol S (1975) Ethanolamine toxicity in aquatic invertebrates (Engl. abstract). Stud Cercet Biol Ser Biol Anim 27(4):345–351.

    CAS  Google Scholar 

  • Atkinson R (1988) Estimation of gas-phase hydroxyl radical rate constants for organic chemicals. Environ Toxicol Chem 7:435–442.

    Article  CAS  Google Scholar 

  • Ayanaba A, Alexander M (1974) Transformation of methylamines and formation of a hazardous product, dimethylnitrosamines, in samples of treated sewage and lake water. J Environ Qual 2:83–89.

    Article  Google Scholar 

  • Bailey RE, Brzak KA, Gonsior SJ, Harms DW, Hopkins DL, Piasecki DA, Reim RE, Voos-Esquivel CA, Warriner JP (1991) Diethylenetriamine: environmental fate in sewage, lake water, and soil. EPA 40–9139414 (OTS0531303). U.S. Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • Batchelder TL, Rhinehart WL (1977) BOD of TIPA using Midland City seed. The Dow Chemical Company, Midland, MI (unpublished report).

    Google Scholar 

  • Birch RR, Fletcher RJ (1991) The application of dissolved inorganic carbon measurements to the study of aerobic biodegradability. Chemosphere 23(4):507–524.

    Article  CAS  Google Scholar 

  • Boethling RS, Alexander M (1979) Microbial degradation of organic compounds at trace levels. Environ Sci Technol 13(8):989–991.

    Article  CAS  Google Scholar 

  • Bridie AL, Wolff CJM, Winter M (1979a) BOD and COD of some petrochemicals. Water Res 13(7):627–630.

    Article  CAS  Google Scholar 

  • Bridie AL, Wolff, CJM, Winter M (1979b) The acute toxicity of some petrochemicals to goldfish. Water Res 13(7):623–626.

    Article  CAS  Google Scholar 

  • Bringmann G, Kühn R (1976) Limiting values for the damaging action of water pollutants to bacteria (Pseudomonas putida) and green algae (Scenedesmus quadricauda) in the cell multiplication inhibition test (Engl, summary). Z Wasser Abwasser Forsch 10(3–4):87–89.

    Google Scholar 

  • Bringmann G, Kühn R (1977) Results of the damaging effect of water pollutants on Daphnia magna. Z Wasser Abwasser Forsch 10(5):161–166.

    CAS  Google Scholar 

  • Bringmann G, Kühn R (1978) Testing of substances for their toxicity threshold: model organisms Microcystis (diplocystis) aeruginosa and Scenedesmus quadricauda. Mitt Int Ver Theor Angew Limnol 21:275–284.

    CAS  Google Scholar 

  • Bringmann G, Kühn R (1980) Comparison of the toxicity thresholds of water pollutants to bacteria, algae, and protozoa in the cell multiplication inhibition test. Water Res 14(3):231–241.

    Article  CAS  Google Scholar 

  • Bringmann G, Kühn R, Winter A (1980) Determination of biological damage from water pollutants to protozoa. III. Saporozoic flagellates (Engl, abstract). Z Wasser Abwasser Forsch 13(5):170–173.

    CAS  Google Scholar 

  • Brown RP, Milazzo DP, Servinski MF (1994) Monobutanolamine: the toxicity to the green alga Selenastrum capricornutum Printz. The Dow Chemical Company, Midland, MI (unpublished report).

    Google Scholar 

  • Budavari S (ed) (1989) The Merck Index, 11th ed. Merck & Co., Inc., Rahway, NJ.

    Google Scholar 

  • Chou WL, Speece RE, Siddiql RH (1979) Acclimation and degradation of petrochemical waste water components by methane fermentation. Biotechnol Bioeng Symp 8:391–414.

    CAS  Google Scholar 

  • Cleveland CB, Ulmer JJ (1995) Aerobic soil metabolism study of triisopropanolamine (TIPA): a 2, 4-D requested moiety study. DowElanco, Indianapolis IN (unpublished report).

    Google Scholar 

  • Cowgill UM, Takahashi IT, Applegath SL (1985) A comparison of the effect of four benchmark chemicals on Daphnia magna and Ceriodaphnia dubia-affinis tested at two different temperatures. Environ Toxicol Chem 4(35):415–422.

    CAS  Google Scholar 

  • Cowgill UM, Milazzo DP, Landenberger BD (1989) Toxicity of nine benchmark chemicals to Skeletonema costatum, a marine diatom. Environ Toxicol Chem 8(5):451–455.

    CAS  Google Scholar 

  • Cowgill UM, Milazzo DP (1991) The sensitivity of Ceriodaphnia dubia and Daphnia magna to seven chemicals utilizing the three-brood test. Arch Environ Contarn Toxicol 20:211–217.

    Article  CAS  Google Scholar 

  • Cowgill UM, Milazzo DP, Landenberger BD (1991) The sensitivity of Lemna gibba G-3 and four clones of Lemna minor to eight common chemicals utilizing the 7-day test. J Water Pollut Control Fed 63:991–998.

    CAS  Google Scholar 

  • Davis JW (1993) Physico-chemical factors influencing ethyleneamine sorption to soil. Environ Toxicol Chem 12:27–35.

    Article  CAS  Google Scholar 

  • deZwart D, Slooff W (1987) Toxicity of mixtures of heavy metals and petrochemicals to Xenopus laevis. Bull Environ Contam Toxicol 38(2):345–351.

    Article  CAS  Google Scholar 

  • Dill DC, Mayes MA, Shier QV (1982) The toxicity of chemicals to the freshwater green alga, Selenastrum caphcornutum Printz. The Dow Chemical Company, Midland, MI (unpublished report).

    Google Scholar 

  • Eisenreich B, Looney B, Thornton JD (1981) Airborne organic contaminants in the Great Lakes ecosystem. Environ Sci Technol 15(1):30–38.

    Article  CAS  Google Scholar 

  • Ewell WS, Gorsuch JW, Kringle RO, Robillard KA, Spiegel RC (1986) Simultaneous evaluation of the acute effects of chemicals on seven aquatic species. Environ Toxicol Chem 5(9):831–840.

    Article  CAS  Google Scholar 

  • Fattakhova AN, Ofitserov EN, Garusov AV (1991) Cytochrome P-450-dependent catabolism of triethanolamine in Rhodotorula mucilaginosa. Biodegradation 2: 107–113.

    Article  PubMed  CAS  Google Scholar 

  • Frings J, Wondrak C, Schink B (1994) Fermentative degradation of triethanolamine by a homoacteogenic bacterium. Arch Microbiol 162:103–107.

    Article  PubMed  CAS  Google Scholar 

  • Gannon JE, Adams MC, Bennett ED (1978) Microbial degradation of diethanolamine and related compounds. Microbios 23(91):7–18.

    PubMed  CAS  Google Scholar 

  • Gaudy AF (1972) Biochemical oxygen demand. In: Mitchell R (ed) Water Pollution Microbiology. Wiley-Interscience, New York, pp 305–332.

    Google Scholar 

  • Gerike P, Fisher WK (1979) A correlation study of biodegradability determinations with various chemicals in various tests. Ecotoxicol Environ Saf 3:159–173.

    Article  PubMed  CAS  Google Scholar 

  • Gersich FM, Blanchard FA, Applegath SL, Park CN (1985) The precision of daphnid (Daphnia magna Strauss, 1820) static acute toxicity tests. The Dow Chemical Company, Midland, MI (unpublished report).

    Google Scholar 

  • Gerstl Z (1990) Estimation of organic chemical sorption by soils. J Contam Hydrol 6:357–375.

    Article  CAS  Google Scholar 

  • Gonsior SJ, West RJ (1991) Biodegradation of triethanolamine in soil and activated sludge. The Dow Chemical Company, Midland, MI (unpublished report).

    Google Scholar 

  • Heitmuller PT, Hollister TA, Parrish PR (1981) Acute toxicity of 54 industrial chemicals to sheepshead minnows Cyprinodon variegatus. Bull Environ Contam Toxicol 27(5):596–604.

    Article  PubMed  CAS  Google Scholar 

  • Hiatt RW, Naughton JJ, Matthews DC (1953) Effects of chemicals on a schooling fish, Kuhlia sandvicensis. Biol Bull 104:28–44.

    Article  CAS  Google Scholar 

  • Howard PH, Banerjee S (1984) Interpreting results from biodegradability tests of chemicals in water and soil. Environ Toxicol Chem 3:551–562.

    Article  CAS  Google Scholar 

  • Howard PH (ed) (1990) Handbook of Environmental Fate and Exposure Data for Organic Chemicals, Vol. II: Solvents. Lewis Publishers, Chelsea, MI.

    Google Scholar 

  • Howard PH (1991) Atmospheric oxidation program. Version 1.3. Syracuse Research Corp., Syracuse, NY.

    Google Scholar 

  • Huntziger O, Von Letyoeld LH, Zoeteman BC (1978) Aquatic pollutants: transformation and biological effects. Pergamon Press, New York.

    Google Scholar 

  • Johnson WW, Finley MT (1980) Handbook of acute toxicity of chemicals to fish and aquatic invertebrates. Resource Publ 137. U.S. Fish and Wildlife Service, U.S. Department of Interior, Washington, DC.

    Google Scholar 

  • Jones A, Turner JM (1973) Microbial metabolism of amino alcohols; 1-aminopropon-2-ol and ethanolamine metabolism via propionaldehyde and acetaldehyde in a species of Pseudomonas, Biochem J 134:167–182.

    PubMed  CAS  Google Scholar 

  • Jones A, Faulkner A, Turner JM (1973) Microbial metabolism of amino alcohols; metabolism of ethanolamine and l-aminopropon-2-ol in species of Erwinia and the roles of amino alcohol kinase and amino alcohol s-phosphate Phosphorylase in aldehyde formation. Biochem J 134:959–968.

    PubMed  CAS  Google Scholar 

  • Juhnke I, Lüdeman D (1978) Results of the investigation of 200 chemical compounds for acute fish toxicity with the golden orfe test (Engl. abstract). Z Wasser Abwasser Forsch 11(5): 161–164.

    CAS  Google Scholar 

  • Kenaga EE, Moolenar RJ (1979) Fish and Daphnia toxicity as surrogates for aquatic vascular plants and algae. Environ Sci Technol 13:1479–1480.

    Article  CAS  Google Scholar 

  • Klecka GM (1985) Biodegradation. In: Neely WB, Blau GE (eds) Environmental Exposure from Chemicals, Vol. 1. CRC Press, Boca Raton, FL, pp 109–155.

    Google Scholar 

  • Klecka GM, Landi LP (1985) Evaluation of the OECD activated sludge, respiration inhibition test. Chemosphere 14(9):1239–1251.

    Article  CAS  Google Scholar 

  • Krieger MS (1995) Aerobic aquatic metabolism of 14C-triisopropanolamine (TIPA). DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Kuenemann P, DeMorsier A, Vasseur P (1992) Interest of carbon-balance in ready biodegradability testing. Chemosphere 24(l):63–69.

    Article  CAS  Google Scholar 

  • Kühn R, Pattard M, Pernak K, Winter A (1989) Results of the harmful effects of water pollutants to Daphnia magna in the 21 day reproduction test. Water Res 23(4):501–510.

    Article  Google Scholar 

  • Kühn R, Pattard M (1990) Results of the harmful effects of water pollutants to green algae (Scenedesmus subspicatus) in the cell multiplication inhibition test. Water Res 24(l):31–38.

    Article  Google Scholar 

  • Lamb CB, Jenkins GF (1952) BOD of synthetic organic chemicals. In: Bloodgood DE (ed) Proceedings of the 8th Indiana Waste Conference, Engineering Bulletin. Purdue University, West Lafayette, IN, pp 326–339.

    Google Scholar 

  • LeBlanc GA (1980) Acute toxicity of priority pollutants to water flea (Daphnia magna). Bull Environ Contam Toxicol 24(5):684–691.

    Article  PubMed  CAS  Google Scholar 

  • Lewis GE (1992) Determination of pH of aqueous alkanolamines. The Dow Chemical Company, Midland, MI (unpublished report).

    Google Scholar 

  • Loeb HA, Kelly WH (1963) Acute oral toxicity of 1,496 chemicals force fed to carp. Special Scientific Report —Fisheries, No. 471. U.S. Fish and Wildlife Service, Washington, DC.

    Google Scholar 

  • Long, MW Jr (1955) Physical properties of various alkanolamines. The Dow Chemical Company, Midland, MI (unpublished report).

    Google Scholar 

  • Lyman WJ, Reehl WF, Rosenblatt DH (1982) Handbook of Chemical Property Estimation Methods. McGraw-Hill, New York.

    Google Scholar 

  • Mackay D, Paterson S (1981) Calculating fugacity. Environ Sci Technol 15:1006–1014.

    Article  CAS  Google Scholar 

  • Mayes MA, Alexander HC, Dill DC (1983) A study to assess the influence of age on the response of fathead minnows in static acute toxicity tests. Bull Environ Contam Toxicol 31(2): 139–147.

    Article  PubMed  CAS  Google Scholar 

  • Medicinal Chemistry Project (1989) Med. Chem. release 3.54. Daylight Chemical Information Systems, Inc., Irvine, CA.

    Google Scholar 

  • Milazzo DP, Servinski MF, Martin MD (1994) Monobutanolamine, dibutanolamine, tributanolamine: the toxicity to the green alga Selenastrum capricornutum Printz. The Dow Chemical Company, Midland, MI (unpublished report).

    Google Scholar 

  • Mills AL, Alexander M (1976) N-nitrosamine formation by cultures of several microorganisms. Appl Environ Microbiol 31(6):892–895.

    PubMed  CAS  Google Scholar 

  • Mills EJ, Stack VT (1952) Biological oxidation of synthetic organic chemicals. In: Proceedings of the 8th Industrial Waste Conference. Eng Bull Purdue Univ Ext Ser 83:492–517.

    Google Scholar 

  • Mills EJ, Stack VT (1954) Acclimation of microorganisms for the oxidation of pure organic chemicals. In: Proceedings of the 9th Industrial Waste Conference. Eng Bull Purdue Univ Ext Ser 9:449–464.

    Google Scholar 

  • Mirvish SS (1975) Formation of N-nitroso compounds: chemistry, kinetics, and in vivo occurrence. Toxicol Appl Pharmacol 31:325–351.

    Article  PubMed  CAS  Google Scholar 

  • Muller M, Klein W (1991) Estimating atmospheric degradation processes by SARs. Sci Total Environ 109/110:261–273.

    Google Scholar 

  • Newsome LD, Johnson DE, Upnick RL, Broderius SJ, Russom CL (1991) A QSAR study of the toxicity of amines to the fathead minnow. Sci Total Environ 109/ 110:537–552.

    PubMed  Google Scholar 

  • Organization for Economic Cooperation and Development (OECD) (1993) OECD guidelines for testing of chemicals. OECD, Paris, France.

    Google Scholar 

  • Pitter P (1976) Determination of biological degradability of organic substances. Water Res 10:231–235.

    Article  CAS  Google Scholar 

  • Price KS, Wagy GT, Conway RA (1974) Brine shrimp bioassay and seawater BOD of petrochemicals. J Water Pollut Control Fed 46(l):63–77.

    PubMed  CAS  Google Scholar 

  • Richardson ML, Webb KS, Gouch TA (1979) The detection of some /2-nitrosamines in the water cycle. Ecotoxicol Environ Saf 4:207–212.

    Article  Google Scholar 

  • Sax NI, Lewis RJ (1987) Hawley’s Condensed Chemical Dictionary, 11th ed. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Servinski MF, Richardson CH, Brown RP (1993) Monobutanolamine, dibutanolamine, tributanolamine: static acute toxicity to the water flea, Daphnia magna Strauss and the rainbow trout, Oncorhynchus mykiss Walbaum. The Dow Chemical Company, Midland, MI (unpublished report).

    Google Scholar 

  • Struijis JM, Stoltenkamp-Wouterse J, Dekkers ALM (1995) A rationale for the appropriate amount of inoculum in ready biodegradability tests. Biodegradation 6:319–327.

    Article  Google Scholar 

  • Sugatt RH, O’Grady DP, Banerjee S, Howard PH, Gledhill WE (1984) Shake flask biodegradation of 14 commercial phthalate esters. Appl Environ Microbiol 47: 601–606.

    PubMed  CAS  Google Scholar 

  • The Dow Chemical Company (1988) Physical properties of the alkanolamines. Form no. 111–1227–88. The Dow Chemical Company, Midland, MI.

    Google Scholar 

  • Thomann RV (1989) Bioaccumulation model of organic chemical distribution in aquatic food chains. Environ Sci Technol 23:699–707.

    Article  CAS  Google Scholar 

  • Turnbull H, DeMann JG, Weston RF (1954) Toxicty of various refinery materials to fresh water fish. Ind Eng Chem 46(2):324–333.

    Article  CAS  Google Scholar 

  • Urano K, Kato Z (1986) A method to classify biodegradabilities of organic compounds. J Hazard Mater. 13:135–145.

    Article  CAS  Google Scholar 

  • Wallen LE, Greer WC, Lasater R (1957) Toxicity to Gambusia affinis of certain pure chemicals in turbid waters. Sewage Ind Wastes 29(6):695–711.

    CAS  Google Scholar 

  • West RJ (1995) The biodegradation of diisopropanolamine. The Dow Chemical Company, Midland, MI (unpublished report).

    Google Scholar 

  • West RJ, Gonsior SJ (1996) Biodegradation of triethanolamine. Environ Toxicol Chem 15(4):472–480.

    Article  CAS  Google Scholar 

  • Williams GR, Calley AG (1981) The biodegradation of diethanolamine and triethanolamine by a yellow gram-negative rod. J Gen Microbiol 128:1203–1209.

    Google Scholar 

  • Wolverton BC, Harrison DC, Voigt RC (1970) Toxicity of decontamination products. Tech rep AFATL-TR-70-68, (NTIS AD-879 811). U.S. Air Force Armament Laboratory, Eglin Air Force Base, FL.

    Google Scholar 

  • Yordy JR, Alexander M (1980) Microbial metabolism of n-nitrosodiethanolamine in lake water and sewage. Appl Environ Microbiol 39(3):559–565.

    PubMed  CAS  Google Scholar 

  • Yordy JR, Alexander M (1981) Formation of N-nitrosodiethanolamine from diethanolamine in lake water and sewage. J Environ Qual 10(3):266–270.

    Article  CAS  Google Scholar 

  • Young RHF, Ryckman DW, Buzzell JC Jr (1968) An improved tool for measuring biodegradability. J Water Pollut Control Fed 40(8):354–368.

    Google Scholar 

  • Zahn R, Wellens H (1980) Examination of biological degradability through the batch method — further experience and new possibilities of usage (Engl. abstract). Z Wasser Abwasser Forsch 13(1): 1–7.

    CAS  Google Scholar 

  • Zucker E (1985) Acute toxicity test for freshwater fish. (EPA-540/9-85-006). U.S. Environmental Protection Agency, Washington, DC.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Davis, J.W., Carpenter, C.L. (1997). Environmental Assessment of the Alkanolamines. In: Ware, G.W. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 149. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2272-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2272-9_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7482-7

  • Online ISBN: 978-1-4612-2272-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics