Skip to main content

Model Organisms in Developmental Biology

  • Chapter
Developmental Biology

Abstract

The ability to understand developmental processes requires appropriate organisms. The field of genetics established the precedent of focusing research on a few reference or “model” organisms such as Drosophila or maize. Recent developmental biology has depended on a small number of organisms for much of its spectacular progress. This concentration of effort facilitates attempts to advance in the analysis of the basic processes down to the molecular level. On the other hand, there is no single organism that could be selected to study all fundamental events and aspects of development because each developmental pattern leads to a particular species and not to a generalized animal. From the egg of Drosophila, a fruit fly arises, not an insect in general, not a fish, and not a human being. General principles are only recognized when the events of development are studied in several diverse organisms, which develop differently yet display some common features. In addition, laboratory work quickly reveals that even the best model organism exhibits, in addition to its particular advantages, specific disadvantages. Thus the zebra fish has transparent embryos, but large-scale genetic studies require hundreds of aquariums and a staff of workers, and the fruit fly has a wealth of developmental mutants but cannot be conveniently frozen for long-term storage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Thomson, J.A., and Solter, D. (1989): The developmental fate of androgenetica, parthenogenetic, and gynogenetic cells in chimeric gastrulating mouse embryos. Genes Dev. 2:1344–1351.

    Article  Google Scholar 

  • Wagner, E.F., and Keller, G. (1992): The introduction of genes into mouse embryos and stem cells. In Russo, V.E.A., et al. (eds.) Development: The Molecular Genetic Approach, pp. 440–458. Springer-Verlag, Heidelberg.

    Google Scholar 

  • Wischnitzer, S. (1975): Atlas and Laboratory Guide for Vertebrate Embryology. McGraw-Hill, New York.

    Google Scholar 

Sea Urchin

  • Billet, F.S., and Wild, A.E. (1975): Practical Studies of Animal Development, Echinoderms and Ascidians. Chapman & Hall, London.

    Google Scholar 

  • Czihak, G. (1975): The Sea Urchin Embryo. Springer-Verlag, Heidelberg.

    Google Scholar 

  • Davidson, E.H. (1989): Lineage specific gene expression and the regulative capacities of the sea urchin embryo: A proposed mechanism. Development 105:421–445.

    PubMed  CAS  Google Scholar 

  • Hardin, J. (1994): The sea urchin. In Bard, J.B.L. (ed.) Embryos, Color Atlas of Development, pp. 37–53. Wolfe, London.

    Google Scholar 

  • Hörstadius, S. (1973): Experimental Embryology of Echinoderms. Clarendon Press, Oxford.

    Google Scholar 

  • Whitaker, M., and Swann, K. (1993): Lighting the fuse at fertilization. Development 117:1–12.

    CAS  Google Scholar 

Dictyostelium

  • Bozzaro, S. (1992): Dictyostelium: From unicellularity to multicellularity. In Russo, V.E.A., et al. (eds.) Development: The Molecular Genetic Approach, pp. 137–149. Springer-Verlag, Heidelberg.

    Google Scholar 

  • Brookman, J.J., Jermyn, K.A., and Kay, R.R. (1987): Nature and distribution of the morphogen DIF in the Dictyostelium slug. Development 100: 119–124.

    PubMed  CAS  Google Scholar 

  • Kay, R.R., Berks, M., and Traynor, D. (1989): Morphogen hunting in Dictyostelium. Development (Suppl.):81–90.

    Google Scholar 

  • Kay, R., and Insall, R. (1994): Dictyostelium discoideum. In Bard, J.B.L. (ed.) Embryos, Color Atlas of Development, pp. 23–35. Wolfe, London.

    Google Scholar 

  • Konijin, T.M., van der Meene, J.G.C., Bonner, J.T., and Barkley, D. (1967): The acrasin activity of adenosine-3′, 5′-cyclic phosphate. Proc. Natl. Acad. Sci. USA 58:1152–1154.

    Article  Google Scholar 

  • Loomis, W.F. (1975): Dictyostelium discoideum. A Developmental System. Academic Press, New York.

    Google Scholar 

  • Ohmori, T., and Maeda, Y. (1987): The developmental fate of Dictyostelium discoideum cells depends greatly on the cell-cycle position at the onset of starvation. Cell Differ. 22:11–18.

    Article  PubMed  CAS  Google Scholar 

  • Oohata, A.A. (1995): Factors controlling prespore cell differentation in Dictyostelium discoideum: Minute amounts of differentation-inducing factor promote prespore cell differentiation. Differentiation 59:283–288.

    Article  PubMed  CAS  Google Scholar 

  • Schaap, P. (1991): Intercellular interactions during Dictyostelium development. In Dworkin, M. (ed.) Microbial Cell-Cell Interactions, pp. 147–178. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Takeuchi, I., Tosaka, M., Okamoto, K., and Maeda, Y. (1994): Regulation of cell differentiation and pattern formation in Dictyostelium development. Int. J. Dev. Biol. 38:311–319.

    PubMed  CAS  Google Scholar 

  • Weijer, C.J., Duschl, G., and David, C.N. (1984): Dependence of cell-type proportioning and sorting on cell cycle phase in Dictyostelium discoideum. Exp. Cell Res. 70:133–145.

    CAS  Google Scholar 

Hydra and Other Hydrozoa

  • Berking, S. (1986): Transmethylation and control of pattern formation in hydrozoa. Differentiation 32:10–16.

    Article  CAS  Google Scholar 

  • Bode, P.M., and Bode, H.R. (1984): Patterning in Hydra. In Malacinski, G.M., and Bryant, S.V. (eds.) Pattern Formation, Vol. I, pp. 213–241, Macmillan, New York.

    Google Scholar 

  • Gierer, A. (1977): Biological features and physical concepts of pattern formation exemplified by Hydra. In Moscona, A.A., and Monroy, A. (eds.) Pattern Development. CurrTop. Dev. Biol. 11:17–58.

    Google Scholar 

  • Lange, R.G., Müller, W.A. (1991): SIF, a novel morphogenetic inducer in hydrozoa. Dev. Biol. 11:17–58.

    Google Scholar 

  • Müller, W.A. (1975): Hydractinia echinata. Ablaichen, Embryonalentwicklung, Metamorphose. Film E2080 mit Begleittext. Institut für Wissenschaftlichen Film, Göttingen, Germany.

    Google Scholar 

  • Müller, W.A. (1995): Competition for factors and cellular resources as a principle of pattern formation in Hydra. Dev. Biol. 167:159–174 (Part I);

    Article  Google Scholar 

  • Müller, W.A. (1995): Competition for factors and cellular resources as a principle of pattern formation in Hydra. Dev. Biol. 167:175–189 (Part II).

    Article  Google Scholar 

  • Müller, W.A. (1996): Pattern formation in the immortal Hydra. Trends Genet. 11:91–96

    Article  Google Scholar 

Caenorhabditis elegans

  • Bossinger, O., and Schierenberg, E. (1992): Cell-cell communication in the embryo of Caenorhabditis elegans. Dev. Biol. 151:401–409.

    Article  PubMed  CAS  Google Scholar 

  • Boveri, T. (1904 and 1910): See Bibliography for Box 1.

    Google Scholar 

  • Brenner, S. (1974): The genetics of Caenorhabditis elegans. Genetics 77: 71–94.

    PubMed  CAS  Google Scholar 

  • Edgar, L. (1992): Embryogenesis in Caenorhabditis elegans. In Russo, V.E.A., et al. (eds.) Development: The Molecular Genetic Approach, pp. 273–294. Springer-Verlag, Heidelberg.

    Google Scholar 

  • Hope, I.A. (1994): 4. Caenorhabditis elegans In Bard, J.B.L. (ed.) Embryos, Color Atlas of Development, pp. 55–75. Wolfe, London.

    Google Scholar 

  • Ruvkun, G. (1992): Generation of temporal and cell lineage asymmetry during C. elegans development. In Russo, V.E.A., et al. (eds.) Development: The Molecular Genetic Approach, pp. 295–307. Springer-Verlag, Berlin.

    Google Scholar 

  • Schierenberg, E. (1982): Development of the nematode Caenorhabditis elegans. In Developmental Biology of Freshwater Invertebrates, pp. 249–281. Alan R. Liss, New York.

    Google Scholar 

Spiralians

  • Anderson, D.T. (1973): Embryology and Phylogeny in Annelids and Arthropods. Pergamon Press, Oxford.

    Google Scholar 

  • Atkinson, J.W. (1987): An arias of light micrographs of normal and lobe-less larvae of the marine gastropood Ilyanassa obsoleta. Int. J. Invert. Reprod. Dev. 9:169–178.

    Google Scholar 

  • Biggelaar, J.A.M., van den, Dictus, W.J.A.G., and Serras, E. (1994): Molluscs. In Bard, J.B.L. (ed.) Embryos, Color Atlas of Development, pp. 77–91. Wolfe, London.

    Google Scholar 

  • de Laat, S.W., et al. (1980): Intercellular communication patterns are involved in cell determination in early molluscan development. Nature (London) 287:546–548.

    Article  Google Scholar 

  • Dorrestejin, A., et al. (1993): Molecular specification of cell lines in the embryo of Platynereis (Annelida). Roux’s Arch. Dev. Biol. 202:260–269.

    Article  Google Scholar 

  • Freeman, G., and Lundelius, J.W. (1982): The developmental genetics of dextrality and sinistrality in the gastropod Lymnea peregra. Roux’s Arch. Dev. Biol. 191:69–83.

    Article  Google Scholar 

  • Gourrier, P., et al. (1978): Significance of the polar lobe for the determination of dorsoventral polarity in Dentalium vulgare (da Costa). Dev. Biol. 53: 233–242.

    Article  Google Scholar 

  • Harrison, W., and Cowden, R.R. (1982): Developmental Biology of Freshwater Invertebrates. Alan R. Liss, New York.

    Google Scholar 

  • Raven, C.R (1966): Morphogenesis: The Analysis of Molluscan Development. Pergamon Press, Oxford.

    Google Scholar 

  • Reverberi, G. (1971): Experimental embryology of marine and freshwater invertebrates. North-Holland Publishing Co., Amsterdam.

    Google Scholar 

  • Weisblat, D.A. (1994): The leech. In Bard, J.B.L. (ed.) Embryos, Color Atlas of Development, pp. 93–112. Wolfe, London.

    Google Scholar 

Drosophila

  • Beachy, P.A. (1990): A molecular view of the Ultrabithorax homeotic gene of Drosophila. Trends Genet. 6(2):46–51.

    Article  PubMed  CAS  Google Scholar 

  • Campos-Ortega, J.A., and Hartenstein, V. (1996): Embryonic Development of Drosophila melanogaster. 2nd ed. Springer-Verlag, Heidelberg.

    Google Scholar 

  • Campos-Ortega, J.A., and Knust, E. (1992): Genetic mechanisms in early neurogenesis of Drosophila melanogaster. In Russo, V., et al. (eds.) Development: The Molecular Genetic Approach, pp. 341–354. Springer-Verlag, Heidelberg.

    Google Scholar 

  • Driever, W., and Nüsslein-Volhard, C. (1988): The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell 54:95–104.

    Article  PubMed  CAS  Google Scholar 

  • Driever, W., Siegel, V., and Nüsslein-Volhard, C. (1990): Autonomous determination of anterior structures in the early Drosophila embryo by the bicoid morphogen. Development 109:811–820.

    PubMed  CAS  Google Scholar 

  • Govind, S., and Steward, R. (1991): Dorsoventral pattern formation in Drosophila. Trends Genet. 7:119–124.

    PubMed  CAS  Google Scholar 

  • Heemskerk, J., et al. (1994): Drosophila hedgehog acts as a morphogen in cellular patterning. Cell 76:449–460.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence, P.A. (1992). The Making of a Fly. The Genetics of Animal Design. Blackwell Scientific, Oxford.

    Google Scholar 

  • Leptin, M. (1994): Drosophila. In Bard, J.B.L. (ed.) Embryos, Color Atlas of Development, pp. 113–134. Wolfe, London.

    Google Scholar 

  • Micklem, D.R. (1995): mRNA localisation during development. Dev. Biol. 172:377–395.

    Article  PubMed  CAS  Google Scholar 

  • Rongo, C., and Lehmann, R. (1996): Regulated synthesis, transport and assembly of the Drosophila germ plasm. Trends Genet. 12:102–109.

    Article  PubMed  CAS  Google Scholar 

  • St. Johnston D., and Nüsslein-Volhard, C. (1992): The origin of pattern and polarity in the Drosophila embryo. Cell 68:201–219.

    Article  PubMed  CAS  Google Scholar 

  • Struhl, G. (1981): A homeotic mutation transforming leg to antenna in Drosophila. Nature (London) 292:635–638.

    Article  CAS  Google Scholar 

  • Struhl, G., Strahl, K., and Macdonald, P.M. (1989): The gradient morphogen bicoid is a concentration-dependent transcriptional activator. Cell 57:1259–1273.

    Article  PubMed  CAS  Google Scholar 

  • Tautz, D. (1992): Genetic and molecular analysis of early pattern formation in Drosophila. In Russo, V.E.A., et al. (eds.) Development: The Molecular Genetic Approach, pp. 308–327. Springer-Verlag, Heidelberg.

    Google Scholar 

Tunicates

  • Bates, W.R., and Jeffery, W.R. (1987): Localization of axial determinants in the vegetal pole region of ascidian eggs. Dev. Biol. 124:65–76.

    Article  Google Scholar 

  • Conklin, E.G. (1905): Mosaic development in ascidian eggs. J. Exp. Zool. 2:145–223.

    Article  Google Scholar 

  • Jeffery, W.R. (1990): An ultraviolet-sensitive maternal mRNA encoding a cytoskeletal protein may be involved in axis formation in the ascidian embryo. Dev. Biol. 141:141–148.

    Article  PubMed  CAS  Google Scholar 

  • Meedel, T.H., Crowthier, R.J., and Wittaker, J.R. (1987): Determinative properties of muscle lineages in ascidian embryos. Development 100:245–260.

    PubMed  CAS  Google Scholar 

  • Nishida, H. (1990): Determinative mechanisms in secondary muscle lineages of ascidian embryos: Development of muscle-specific features in isolated muscle progenitor cells. Development 108:559–568.

    PubMed  CAS  Google Scholar 

  • Nishida, H. (1992): Developmental potential for tissue differentiation of fully dissociated cells of the ascidian embryo. Roux’s Arch. Dev. Biol. 201: 81–87.

    Article  Google Scholar 

  • Sardet, C., et al. (1989): Fertilization and ooplasmic movements in the ascidian egg. Development 105:237–249.

    PubMed  CAS  Google Scholar 

  • Whittaker, J.R. (1979): Cytoplasmic determinants of tissue differentiation in the ascidian egg. In Subtelny, S., and Konigsberg, I.R. (eds.) Determinants of Spatial Organization, pp. 29–51. Academic Press, New York.

    Google Scholar 

  • Whittaker, J.R. (1980): Acetylcholinesterase development in extra cells caused by changing the distribution of myoplasm in ascidian embryos. J. Embryol. Exp. Morphol. 55:343–354.

    PubMed  CAS  Google Scholar 

  • Whittaker, J.R. (1987): Cell lineages and determinants of cell fate in development. Am. Zool. 27:607–622.

    Google Scholar 

Xenopus, Amphibians

  • Billet, F.S., and Wild, A.E. (1975): Practical Studies of Animal Development, Amphibians. Chapman & Hall, London.

    Google Scholar 

  • Bolce, M.E., et al. (1992): Ventral ectoderm of Xenopus forms neural tissue, including hindbrain, in response to activin. Development 115:681–688.

    PubMed  CAS  Google Scholar 

  • Cho, K.W.Y., et al. (1991): Molecular nature of Spemann’s organizer: The role of the Xenopus Homeobox gene goosecoid. Cell 67:1111–1120.

    Article  PubMed  CAS  Google Scholar 

  • Chui, Y., et al. (1995): Xwnt-8b: A maternally expressed Xenopus Wnt gene with a potential role in establishing the dorsoventral axis. Development 121: 2177–2186.

    Google Scholar 

  • Dohrmann, C.E., et al. (1993): Expression of activin mRNA during early development in Xenopus laevis. Development 157:474–483.

    CAS  Google Scholar 

  • Gerhart, J., et al. (1981): A reinvestigation of the role of the grey crescent in axis formation in Xenopus laevis. Nature 292:511–516.

    Article  PubMed  CAS  Google Scholar 

  • Gerhart, J., et al. (1986): Amphibian early development. BioScience 36: 541–549.

    Article  Google Scholar 

  • Gilbert, S.F., Saxén. L. (1993): Spemann’s organizer: Models and molecules. Mech. Dev. 41:73–89.

    Article  PubMed  CAS  Google Scholar 

  • Grunz, H. (1993): The dorsalization of Spemann’s organizer takes place during gastrulation in Xenopus laevis embryos. Dev. Growth Differ. 35(1):25–32.

    Article  Google Scholar 

  • Grunz, H., Schüren C., and Richter, K. (1995): The role of vertical and planar signals during the early steps of neural induction. Int. J. Dev. Biol. 39: 539–543.

    PubMed  CAS  Google Scholar 

  • Gurdon, J.B. (1987): Embryonic induction—molecular prospects. Development 99:285–306.

    PubMed  CAS  Google Scholar 

  • Gurdon, J.B., et al. (1994): Activin signalling and response to a morphogen gradient. Nature 371:487–492.

    Article  PubMed  CAS  Google Scholar 

  • Hausen, P., and Riebesoll, M. (1991): The Early Development of Xenopus laevis. Springer-Verlag, Heidelberg.

    Google Scholar 

  • Hemmati-Brivaniou, A., Kelly, O.G., and Melton, D.A. (1994): Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neutralizing activity. Cell 77:283–295.

    Article  Google Scholar 

  • Hemmati-Brivaniou, A., and Melton, D.A. (1994): Inhibition of activin receptor signaling promotes neuralization in Xenopus. Cell 77:273–281.

    Article  Google Scholar 

  • Henry, J.J., and Grainger, R.M. (1990): Early tissue interactions leading to embryonic lens formation in Xenopus laevis. Dev. Biol. 141:149–163.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, A.G. (1994): Normal neurulation in amphibia. In Bock, G., and Marsh, J. (eds.) Neural Tube Defects, pp. 49–65. John Wiley & Sons, New York.

    Google Scholar 

  • Keller, R.E. (1986): The cellular basis of amphibian gastrulation. In Browder, L. (ed.) Developmental Biology: A Comprehensive Synthesis. Vol. 2, pp. 241–327. Plenum, New York.

    Google Scholar 

  • Kessler, D.S., and Melton, D.A. (1995): Induction of dorsal mesoderm by soluble, mature Vgl protein. Development 121:2155–2164.

    PubMed  CAS  Google Scholar 

  • Kimelman, D., et al. (1992): Synergistic principles of development: Overlapping patterning systems in Xenopus mesoderm induction. Development 116: 1–9.

    PubMed  CAS  Google Scholar 

  • Micklem, D.R. (1995): mRNA localisation during development. Dev. Biol. 172:377–395.

    Article  PubMed  CAS  Google Scholar 

  • Niehrs, C., et al. (1993): The homeobox gene goosecoid controls cell migration in Xenopus embryos. Cell 72:491–503.

    Article  PubMed  CAS  Google Scholar 

  • Niehrs, C., Steinbeisser, H., and De Robertis, E.M. (1994): Mesodermal patterning by a gradient of the vertebrate homeobox gene goosecoid. Science 263:817–820.

    Article  PubMed  CAS  Google Scholar 

  • Nieuwkoop, P.D. (1977): Origin and establishment of embryonic polar axes in amphibian development. In Moscona, A.A., and Monroy, A. (eds.) Pattern Development. Curr. Top. Dev. Biol. 11:115–132.

    Google Scholar 

  • Nieuwkoop, P.D., and Faber, J. (1975): Normal Table of Xenopus laevis (Daudin), 2nd ed., North-Holland Publishing Co., Amsterdam.

    Google Scholar 

  • Otte, A.P., et al. (1988): Protein kinase C mediates neural induction in Xenopus laevis. Nature 334:618–620.

    Article  PubMed  CAS  Google Scholar 

  • Pieler, T. (1992): Xenopus embryogenesis. In Russo, V.E.A., et al. (eds.) Development: The Molecular Genetic Approach, pp. 355–369. Springer-Verlag, Heidelberg.

    Google Scholar 

  • Rugh, R. (1962): Experimental Embryology. Burgess, Minneapolis.

    Google Scholar 

  • Sasai, Y., et al. (1994): Xenopus chordin: A novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79:779–790.

    Article  PubMed  CAS  Google Scholar 

  • Sasai, Y., et al. (1995): Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signal in Xenopus. Nature 376:333.

    Article  PubMed  CAS  Google Scholar 

  • Sive, H.L. (1993): The frog prince-ss: A molecular formula for dorsoventral patterning in Xenopus. Genes Dev. 7:1–12.

    Article  PubMed  CAS  Google Scholar 

  • Slack, J.M.W. (1993): Embryonic induction. Mech. Dev. 41:91–107.

    Article  PubMed  CAS  Google Scholar 

  • Slack, J.M.W. (1994): Xenopus. In Bard, J.B.L. (ed.) Embryos, Color Atlas of Development, pp. 149–166. Wolfe, London.

    Google Scholar 

  • Smith, W.C., and Harland, R.M. (1992): Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70:829–840.

    Article  PubMed  CAS  Google Scholar 

  • Smith, W.C., et al. (1993): Secreted noggin protein mimics the Spemann organizer in dorsalizing Xenopus mesoderm. Nature 361:547–549.

    Article  PubMed  CAS  Google Scholar 

  • Sokol, S.Y, and Melton, D.A. (1992): Interaction of wnt and activin in dorsal mesoderm induction in Xenopus. Dev. Biol. 154:348–355.

    Article  PubMed  CAS  Google Scholar 

  • Sosoi, Y., et al. (1994): Xenopus chordin: A novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79:779–790.

    Article  Google Scholar 

  • Steinbeisser, H., et al. (1993): Xenopus axis formation: Induction of goosecoid by injected WXwnt-8 and activin mRNAs. Development 118:499–507.

    PubMed  CAS  Google Scholar 

  • Vincent, J.P., and Gerhart, J.C. (1987): Subcortical rotation in Xenopus eggs: An early step in embryonic axis formation. Dev. Biol. 123:526–529.

    Article  PubMed  CAS  Google Scholar 

  • Wischnitzer, S. (1975): Atlas and Laboratory Guide for Vertebrate Embryology. McGraw-Hill, New York.

    Google Scholar 

Danio (formerly Brachydanio, Zebra Fish)

  • Hisaoka, K.K., and Battle, H.I. (1985): The normal developmental stages of the zebrafish Brachydanio rerio (Hamilton-Buchanan). J. Morphol. 102: 311–328.

    Article  Google Scholar 

  • Laale, H.W. (1977): The biology and use of zebrafish, Brachydanio rerio in fisheries research. J. Fish Biol. 10:121–173.

    Article  Google Scholar 

  • Metcalfe, W.K. (1994): The zebrafish. In Bard, J.B.L. (ed.) Embryos, Color Atlas of Development, pp. 135–147. Wolfe, London.

    Google Scholar 

  • Rugh, R. (1962): Experimental Embryology. Burgess, Minneapolis.

    Google Scholar 

  • Strähle, U., and Ingham, P.W. (1992): Zebrafish development: Flight of fancy or a major new school? Curr. Biol. 2:135–139.

    Article  PubMed  Google Scholar 

  • Warga, R.M., and Kimmel, C.B. (1990): Cell movements during epiboly and gastrulation in zebrafish. Development 108:569–580.

    PubMed  CAS  Google Scholar 

  • Woo, K., and Fraser, S.E. (1995): Order and coherence in the fate map of the zebrafish nervous system. Development 121:2595–2609.

    PubMed  CAS  Google Scholar 

Bird

  • Billet, F.S., and Wild, A.E. (1975): Practical Studies of Animal Development, Birds. Chapman & Hall, London.

    Google Scholar 

  • Patten, B.M. (1951): Early Embryology of the Chick. 5th ed. McGraw-Hill, New York.

    Google Scholar 

  • Romanoff, A.L. (1960): The Avian Embryo. Macmillan, New York.

    Google Scholar 

  • Rugh, R. (1962): Experimental Embryology. Burgess, Minneapolis.

    Google Scholar 

  • Stern, C.D. (1994): The chick. In Bard, J.B.L. (ed.) Embryos, Color Atlas of Development, pp. 167–182. Wolfe, London.

    Google Scholar 

  • Stern, C.D., and Canning, D.R. (1990): Origin of cells giving rise to mesoderm and endoderm in chick embryo. Nature 343:273–275.

    Article  PubMed  CAS  Google Scholar 

  • Wischnitzer, S. (1975): Atlas and laboratory guide for vertebrate embryology. McGraw-Hill, New York.

    Google Scholar 

Mouse

  • Bard, J.B.L., and Kaufmann, M.H. (1994): The mouse. In Bard, J.B.L. (ed.) Embryos, Color Atlas of Development, pp. 183–206. Wolfe, London.

    Google Scholar 

  • Barlow, D.P. (1992): Cloning developmental mutants from the mouse t complex. In Russo, V.E.A., et al. (eds.) Development: The Molecular Genetic Approach, pp. 394—408. Springer-Verlag, Heidelberg.

    Google Scholar 

  • Billet, F.S., and Wild, A.E. (1975): Practical Studies of Animal Development, Mammals. Chapman & Hall, London.

    Google Scholar 

  • Bürki, K. (1986): Experimental Embryology of the Mouse. S. Karger, Basel.

    Google Scholar 

  • Hogan, B., Constantini, F., and Lacy, E. (1986): Manipulating the Mouse Embryo. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • Lobe, C.G., and Gruss, P. (1992): From Drosophila to mouse. In Russo, V.E.A., et al. (eds.) Development: The Molecular Genetic Approach, pp. 382–393. Springer-Verlag, Heidelberg.

    Google Scholar 

  • Rugh, R. (1967): Experimental Embryology. Burgess, Minneapolis.

    Google Scholar 

  • Surani, M.A.H., Barton, S.C., and Norris, M.L. (1986): Nuclear transplantation in the mouse: Hereditable differences between parental genomes after activation of the embryonic genome. Cell 45:127–136.

    Article  PubMed  CAS  Google Scholar 

  • Theiler, K. (1989): The House Mouse. Atlas of Embryonic Development. 2nd printing. Springer-Verlag, Heidelberg.

    Google Scholar 

Human

  • England, M.A. (1994): The human (by M. England). In Bard, J.B.L. (ed) Embryos, Color Atlas of Development, pp. 207–220. Wolfe, London.

    Google Scholar 

  • Hinrichsen, K.V (1990): Human Embryology. Springer-Verlag, Heidelberg.

    Google Scholar 

  • Langman, J. (1989): Medical Embryology. The Williams & Wilkins Co., Baltimore.

    Google Scholar 

  • Moore, K.L. (1990): Grundlagen der medizinischen Embryologie. Enke, Stuttgart, Germany.

    Google Scholar 

  • Tuchmann-Duplessis, H., David, G., and Haegel, P. (1972): Illustrated Human Embryology. Vol. 1 and 2. Springer-Verlag, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Müller, W.A. (1997). Model Organisms in Developmental Biology. In: Developmental Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2248-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2248-4_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7472-8

  • Online ISBN: 978-1-4612-2248-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics