Skip to main content

Development of the Nervous System: Cell Migration, Pathfinding, and Self-Organization

  • Chapter
Developmental Biology
  • 585 Accesses

Abstract

Recall that in vertebrate embryos, the central nervous system forms along the dorsal midline of the body axis. The formation of the nervous system begins during gastrulation, when the dorsal mesoderm (chordamesoderm) moves into contact with the overlying ectoderm. The dorsal mesoderm emits signals, presumably noggin and chordin protein, which induce the overlying ectoderm to adopt a neural fate. The induced neural plate forms neural folds, the folds form the neural tube, and the neural tube forms the brain and the spinal cord. Still missing are the spinal ganglia and the essential parts of the autonomous nervous system, in particular, the sympathetic system and the peripheral components of the parasympathetic system, such as the neuronal network of the gut. These parts derive from the neural crest cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Aug, S.-L. (1996): The brain organization. Nature 380:25–27.

    Article  Google Scholar 

  • Campos-Ortega, J.A., and Knust, E. (1992): Genetic mechanisms in early neurogenesis of Drosophila melanogaster. In Russo, V.E.A., et al. (eds.) Development: The Molecular Genetic Approach, pp. 343–354. Springer-Verlag, Heidelberg.

    Google Scholar 

  • Coulombe, J.N., and Bronner-Fraser, M. (1987): Cholinergic neurones aquire adrenergic neurotransmitters when transplanted into an embryo. Nature 324:569–572.

    Article  Google Scholar 

  • Doniach, T. (1995): Basic FGF as an inducer of anteroposterior neural pattern. Cell 83:1067–1070.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, C., et al. (1993): Neurotrophins promote motor neuron survival and are present in embryonic limb bud. Nature 363:266–363.

    Article  PubMed  CAS  Google Scholar 

  • Hubel, D.H., and Wiesel, T.N. (1962): Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160: 106–154.

    PubMed  CAS  Google Scholar 

  • Hubel, D.H., and Wiesel, T.N. (1963): Receptive fields of cells in striate cortex of very young, visually inexperienced kittens. J. Neurophysiol. 26: 944–1002.

    Google Scholar 

  • Hubel, D.H., Wiesel, T.N., and LeVay, S. (1977): Plasticity of ocular dominance columns in monkey striate cortex. Philos. Trans. R. Soc. London B 278:377–409.

    Article  CAS  Google Scholar 

  • Hunt, P., et al. (1991): Homeobox genes and models for patterning the hindbrain and brachial arches. Development (Suppl. 1):187–169.

    CAS  Google Scholar 

  • Hynes, R.O., and Lander, A.D. (1992): Contact and adhesive specifities in the associations, migrations, and targeting of cells and axons. Cell 68:303–322.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, A.G. (1994): Normal neurulation in amphibia. In Bock, G., and Marsh, J. (eds.) Neural Tube Defects, pp. 6–24. John Wiley & Sons, New York.

    Google Scholar 

  • Jacobson, M. (1967): Retinal ganglion cells: Specification of central connections in larval Xenopus laevis. Science 155:1106–1108.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, F., and Bottjer, S.W. (1994): Afferent influences on cell death and birth during development of a cortical nucleus necessary for learned vocal behavior in zebra finches. Development 120:13–24.

    PubMed  CAS  Google Scholar 

  • Joyner, A.L. (1996): Engrailed, Wnt and pax genes regulate midbrain-hindbrain development. Trends Genet. 12:15–20.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, O.G., and Melton, D.A. (1995): Induction and patterning of the vertebrate nervous system. Trends Genet. 11:273–278.

    Article  PubMed  CAS  Google Scholar 

  • Klacheim, C., et al. (1987): In vivo effect of brain-derived neurotrophic factor on the survival of neural crest precursor cells of the dorsal root ganglia. EMBO J. 6:2871–2873.

    Google Scholar 

  • LeDourain, N., and Smith, J. (1988): Development of the peripheral nervous system from the neural crest. Annn. Rev. Cell Biol. 4:375–404.

    Article  Google Scholar 

  • Levi-Montalcini, R. (1987): The nerve growth factor 35 years later. Science 237:1154–1161.

    Article  PubMed  CAS  Google Scholar 

  • Snider, W.D. (1994): Functions of the neurotrophins during nervous system development: What the knockouts are teaching us. Cell 77:627–638.

    Article  PubMed  Google Scholar 

  • Yamada, K.M., Spooner, B.S., and Wessells, N.K. (1971): Ultrastructure and function of growth cones and axons of cultured nerve cells. J. Cell Biol. 49:614–635.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Müller, W.A. (1997). Development of the Nervous System: Cell Migration, Pathfinding, and Self-Organization. In: Developmental Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2248-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2248-4_14

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7472-8

  • Online ISBN: 978-1-4612-2248-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics