Skip to main content

Potential Impacts of Climate Change on Nutrient Cycling, Decomposition, and Productivity in Arctic Ecosystems

  • Chapter

Part of the book series: Ecological Studies ((ECOLSTUD,volume 124))

Abstract

Short thaw seasons, low soil temperatures, high moisture content, and low rates of evapotranspiration through much or all of growing seasons in the Arctic combine to slow both litter decomposition and soil organic matter turnover. As a result, most arctic soils are overlain by mats consisting of plant litter and partially decomposed organic matter. These organic mats serve to retain moisture, impede the progression of seasonal soil thawing, and maintain low soil temperatures. The consequently cold, wet soil conditions serve to severely constrain microbially mediated processes such as decomposition and nutrient mineralization and create an ecosystem “bottleneck” (Chapin et al., 1980) by lowering rates of nutrient supply to plant roots. As a result, rates of plant growth and nutrient cycling between plants and soils are exceedingly low in arctic ecosystems. This view is consistent with fertilization studies in various tundra types showing consistent increases in plant growth and net primary production (NPP—the amount of plant biomass produced annually in an ecosystem) in response to nitrogen (N), phosphorus (P), or N plus P additions (e.g., Chapin and Shaver, 1985a; Haag, 1974; McCown, 1978; McKendrick, 1980; Ulrich and Gersper, 1978). Such studies suggest that the effects of low nutrient availability limit plant growth in the Arctic more than do the direct effects of cold conditions on plant processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aber, J.D., and Melillo, J.M. 1982. Nitrogen immobilization in decaying hardwood leaf litter as a function of initial nitrogen and lignin content. Can. J. Bot.60: 2263 – 2269.

    Article  CAS  Google Scholar 

  • Andreev, V.N., and Aleksandrova, V.D. 1981. Geobotanical division of the Soviet Arctic. In: Bliss, L.C., Heal, O.W., Moore, J.J. (eds.), Tundra Ecosystems: A Comparative Analysis(pp. 25 – 34 ). Cambridge: Cambridge University Press.

    Google Scholar 

  • Atkin, O.K., and Cummins, W.R. 1994. The effect of nitrogen source on growth, nitrogen economy and respiration of two high arctic plant species differing in relative growth rate. Functional Ecol. 8:389–399. Atkin, O.K., Villar, R., and Cummins, W.R. 1993. The ability of several high arctic plant species to utilize nitrate nitrogen under field conditions. Oecologia96:239– 245.

    Google Scholar 

  • Bliss, L.C. 1981. North American and Scandinavian tundras and polar deserts. In: Bliss, L.C., Heal, O.W., and Moore, J.J. (eds.), Tundra Ecosystems: A Comparative Analysis(pp. 38 – 46 ). Cambridge: Cambridge University Press.

    Google Scholar 

  • Bunnell, F.L., and Tait, D.E.N. 1974. Mathematical simulation models of decomposition processes. In: Holding, A.J., Heal, O.W., MacLean, S.F. Jr., and Flanagan, P.W. (eds.), Soil Organisms and Decomposition in Tundra (pp. 207–226). Stockholm: Tundra Biome Steering Committee. Chapin, D.M., and Bledsoe, C.S. 1992. Nitrogen fixation in arctic plant communities. In:

    Google Scholar 

  • Chapin, F.S. etal. (eds.), Physiological Ecology of Arctic Plants: Implications for Climate Change (pp. 301–320). New York: Academic Press.

    Google Scholar 

  • Chapin, F.S. III, and Bloom, A.J. 1976. Phosphate absorption: Adaptation of tundra graminoids to a low-temperature, low-phosphorus environment. Oikos 26:111– 121.

    Google Scholar 

  • Chapin, F.S.III, and Shaver,G.R. 1985A.Individualistic growth response of tundra plant species to manipulation of light, temperature, and nutrients in a field experiment. Ecology 66:564–576.

    Google Scholar 

  • Chapin, F.S. III, and Shaver, G.R. 1985b. The physiological ecology of arctic plants. In: Chabot, B.F., and Mooney, H.A. (eds.), Physiological Ecology of North American Plant Communities(pp. 16 – 40 ). London: Chapman and Hall.

    Google Scholar 

  • Chapin, F.S. III, Barsdate, R.J., and Barel, D. 1978. Phosphorus cycling in Alaskan coastal tundra: A hypothesis for the regulation of nutrient cycling. Oikos 31:189– 199.

    Google Scholar 

  • Chapin, F.S. III, Miller, P.C., Billings, W.D., and Coyne, P.I. 1980. Carbon and nutrient budgets and their control in coastal tundra. In: Brown, J., Miller, P.C., Tieszen, L.L., and Bunnel, F.L. (eds.), An Arctic Ecosystem: The Coastal Tundra at Barrow, Alaska. US/IBP Synthesis Series Vol. 12(pp. 458 – 482 ). Stroudsburg, PA: Dowden, Hutchinson and Ross.

    Google Scholar 

  • Chapin, F.S. III, Fetcher, N., Keilland, K., Everett, K.R., and Linkins, A.E. 1988. Productivity and nutrient cycling of Alaskan tundra enhanced by flowing soil water. Ecology69: 693 – 702.

    Article  Google Scholar 

  • Chapin, F.S. III, Shaver, G.R., Giblin, A.E., Nadelhoffer, K.J., and Laundre, J.A. 1995. Responses of Arctic tundra to experimental and observed changes in climate. Ecology76: 694 – 711.

    Article  Google Scholar 

  • Dowding, P., Chapin, F.S., Wielgolaski, F.E., and Kilfeather, P. 1981. Nutrients in tundra ecosystems. In: Bliss, L.C., Heal, O.W., and Moore, J.J. (eds.), Tundra Ecosystems: A Comparative Analysis(pp. 647 – 683 ). Cambridge: Cambridge University Press.

    Google Scholar 

  • French, D.D. 1977. Multivariate characteristics of IBP Tundra Biome site characteristics. In: Bliss, L.C., Heal, O.W., and Moore, J.J. (eds.), Tundra Ecosystems: A Comparative Analysis(pp. 47 – 75 ). Cambridge: Cambridge University Press.

    Google Scholar 

  • Gersper, P.L., Alexander, V., Barkley, S.A., Barsdate, R.J., and Flint, P.S. 1980. The soils and their nutrients. In: Brown, J., Miller, P.C., Tieszen, L.L., and Bunnel, F.L. (eds.), An Arctic Ecosystem: The Coastal Tundra at Barrow, Alaska. US/IBP Synthesis Series Vol 12(pp. 219 – 254 ). Stroudsburg, PA: Dowden Hutchinson and Ross.

    Google Scholar 

  • Giblin, A.E., Nadelhoffer, K.J., Shaver, G.R., Laundre, J.A., and McKerrow, A.J. 1991. Biogeochemical diversity along a riverside toposequence in arctic Alaska. Ecol. Monogr. In press.

    Google Scholar 

  • Haag, R.W. 1974. Nutrient limitations to plant production in two tundra communities. Can. J. Bot.52: 103 – 116.

    Article  CAS  Google Scholar 

  • Hart, S.C., and Gunther, A.J. 1989. In situ estimates of annual net nitrogen mineralization and nitrification in a subarctic watershed. Oecologia80: 284 – 288.

    Google Scholar 

  • Heal, O.W., Flanagan, P.W., French, D.D., and MacLean, S.F., Jr. 1981. Decomposition and accumulation of organic matter in tundra. In: Bliss, L.C., Heal, O.W., and Moore, J.J. (eds.), Tundra Ecosystems: A Comparative Analysis(pp. 587 – 633 ). Cambridge: Cambridge University Press.

    Google Scholar 

  • Hill, D.E., and Tedrow, J.C.F. 1961. Weathering and soil formation in the arctic environment. Am. J. Sci.259: 84 – 101.

    Article  Google Scholar 

  • Hinneri, S., Sonesson, M., and Veum, A.K. 1975. Soils of Fennoscandian IBP tundra ecosystems. In: Wielgolaski, F.E. (ed.), Fennoscandian Tundra Ecosystems. Part 1, Plants and Microorganisms(pp. 31 – 40 ). Berlin: Springer-Verlag.

    Google Scholar 

  • Keilland, K. 1994. Amino acid absorption by arctic plants: Implications for plant nutrition and nitrogen cycling. Ecology75: 2362 – 2372.

    Article  Google Scholar 

  • Malmer, N., and Nihlgård, B. 1980. Supply and transport of mineral nutrients in a subarctic mire. In: Sonesson, M. (ed.), Ecology of a Subarctic Mire(pp. 63 – 95 ). Stockholm: Ecological Bulletins.

    Google Scholar 

  • McCown, B.H. 1978. The interactions of organic nutrients, soil nitrogen and plant growth and survival in the arctic environment. In: Tieszen, L.L. (ed.), Vegetation and Production Ecology of An Alaskan Arctic Tundra(pp. 435 – 456 ). New York: Springer-Verlag.

    Google Scholar 

  • McKendrick, J.D., Batzli, G.O., Everett, K.R., and Swanson, J.C. 1980. Some effects of mammalian herbivores and fertilization on tundra soils and vegetation. Arctic Alpine Res. 12: 565 – 578.

    Article  Google Scholar 

  • Melillo, J.M., Aber, J.D., and Muratore, J.M. 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology63: 621 – 626.

    Article  CAS  Google Scholar 

  • Melillo, J.M., Aber, J.D., Linkins, A.E., Ricca, A., Fry, B., and Nadelhoffer, K.J. 1989. Carbon and nitrogen dynamics along the decay continuum: Plant litter to soil organic matter. In: Clarholm, M., and Bergstrom, L. (eds.), The Ecology of Arable Land(pp. 53 – 62 ). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Nadelhoffer, K.J., Giblin, A.E., Shaver, G.R., and Laundre, J.L. 1991. Effects of temperature and substrate quality on element mineralization in six arctic soils. Ecology. In press.

    Google Scholar 

  • Nadelhoffer, K.J., Giblin, A.E., Shaver, G.R., and Linkins, A.E. 1992. Microbial processes and plant nutrient availability in arctic soils. In: Chapin, F.S., et al. (eds.), Physiological Ecology of Arctic Plants: Implications for Climate Change. (pp. 281 – 300 ). New York: Academic Press.

    Google Scholar 

  • Oechel, W.C. 1989. Nutrient and water flux in a small arctic watershed: An overview. Holarctic Ecol. 12: 229 – 237.

    Google Scholar 

  • Reich, P.B., Walters, M.B., and Ellsworth, D.S. 1992. Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol Monogr. 62: 365 – 392.

    Article  Google Scholar 

  • Sayers, J.K., and Walker, T.W. 1969. Phosphorus transformations in a chrono- sequence of soils developed on a windblown sand in New Zealand. I. Total and organic phosphorus. J. Soil Sci.23: 50 – 64.

    Google Scholar 

  • Shaver, G.R., and Chapin, F.S., III. 1991. Production: Biomass relationships and element cycling in contrasting arctic vegetation types. Ecol. Monogr.61: 1 – 31.

    Article  Google Scholar 

  • Shaver, G.R., Nadelhoffer, K.J., and Giblin, A.E. 1990. Biogeochemical diversity and element transport in a heterogeneous landscape, the North Slope of Alaska. In: Turner, M., and Gardner, R. (eds.), Quantitative Methods in Landscape Ecology. New York: Springer-Verlag.

    Google Scholar 

  • Smirnoff, N., and Stewart, G.R. 1985. Nitrate assimilation and translocation by higher plants: Comparative physiology and ecological consequences. Physiol. Plantar.64: 133 – 140.

    Article  CAS  Google Scholar 

  • Sonesson, M., Wielgolaski, F.E., and Kallio, P. 1975. Description of Fennoscandian tundra ecosystems. In: Wielgolaski, F.E. (ed.), Fennoscandian Tundra Ecosystems. Part7, Plants and Microorganisms(pp. 3 – 28 ). Berlin: Springer-Verlag.

    Google Scholar 

  • Svensson, B.H. 1980. Carbon dioxide and methane fluxes from the ombrotrophic parts of a subarctic mire. In: Sonesson, M. (ed.), Ecology of a Subarctic Mire(pp. 235 – 250 ). Stockholm: Ecological Bulletins.

    Google Scholar 

  • Swift, M.J., Heal, O.W., and Anderson, J.M. 1979. Decomposition in Terrestrial Ecosystems(pp. 276–291). Berkeley, CA: University of California Press.

    Google Scholar 

  • Ulrich, A., and Gersper, P.L. 1978. Plant nutrient limitations of tundra plant growth. In: Tieszen, L.L. (ed.), Vegetation and Production Ecology of An Alaskan Arctic Tundra(pp. 457 – 482 ). New York: Springer-Verlag.

    Google Scholar 

  • Vitousek, P.M., and Howarth, R.W. 1991. Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry13: 87 – 115.

    Article  Google Scholar 

  • Williams, J.D.H., and Walker, T.W. 1969. Fractionation of phosphate in a maturity sequence of New Zealand basaltic soil profiles. Soil Sci. 107: 213 – 219.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Nadelhoffer, K.J., Shaver, G.R., Giblin, A., Rastetter, E.B. (1997). Potential Impacts of Climate Change on Nutrient Cycling, Decomposition, and Productivity in Arctic Ecosystems. In: Oechel, W.C., et al. Global Change and Arctic Terrestrial Ecosystems. Ecological Studies, vol 124. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2240-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2240-8_19

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7468-1

  • Online ISBN: 978-1-4612-2240-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics