Skip to main content

Some L p(L )– and L 2(L 2)– estimates for oscillatory Fourier transforms

  • Chapter
Analysis of Divergence

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

Let \(\begin{gathered} 0 \leqslant {{n}_{k}} \leqslant {{p}_{k}}, 0 \leqslant {{m}_{k}} < {{q}_{k}}, 0 \leqslant {{x}_{k}} < {{p}_{k}},0 \leqslant {{y}_{k}} < {{q}_{k}}, \hfill \\ \left( {{{S}^{a}}f} \right){{\left( t \right)}^{ \wedge }} = {\text{exp}}\left( {it{{{\left| \xi \right|}}^{a}}} \right)\hat{f}\left( \xi \right) \hfill \\ \end{gathered} \). We discuss some examples of maximal estimates and weighted L2-estimates for Sf. The techniques used include asymptotics for Bessel functions and the complete orthogonal decomposition of L2(ℝn) using spherical harmonics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ben-Artzi, S. Devinatz, Local smoothing and convergence properties of Schrödinger type equation, J. Funct. Anal. 101 (1991), pp. 231–254, MR 92k: 35064.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Ben-Artzi, S. Klainerman, Decay and Regularity for the Schrödinger Equation, J. Anal. Math. 58 (1992), pp. 25–37, MR 94e: 35053.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Bergh; J. Löfström, Interpolation Spaces. An Introduction, Grundlehren der Mathematischen Wissenschaften, No. 223. Springer- Verlag, Berlin-New York, 1976, MR 58 #2349.

    Google Scholar 

  4. J. Bonrgain, A remark on Schrödinger operators, Israel J. Math. 77 (1992), pp. 1–16, MR 93k: 35J101.

    Article  MathSciNet  Google Scholar 

  5. L. Carleson, Some Analytic problems to related to Statistical Mechanics, Euclidean harmonic analysis (Proc. Sem., Univ. Maryland, College Park, Md., 1979), pp. 5–45, Lecture Notes in Math. 779, Springer, Berlin, 1980, MR 82j: 8 2005.

    Chapter  Google Scholar 

  6. M. Cowling, Pointwise behavior of solutions to Schrödinger equations, Harmonic analysis (Cortona, 1982), pp. 83–90, Lecture Notes in Math. 992, Springer, Berlin-New York, 1983, MR 85c: 34029.

    Google Scholar 

  7. M. Cowling, G. Mauceri Inequalities for some maximal functions. I, Trans. Amer. Math. Soc. 287 (1985), pp. 431–455, MR 86a:42023.

    Article  MathSciNet  MATH  Google Scholar 

  8. W. Craig, T. Kappeler, W. Strauss, Microlocal dispersive smoothing for the Schrödinger equation, Comm. Pure Appl. Math. 48 (1995), 769–860, MR 96m: 35057.

    Article  MathSciNet  MATH  Google Scholar 

  9. K. Guo, A uniform I P estimate of Bessel functions and distributions supported on Sn-1, Proc. Amer. Math. Soc. 125 (1997), pp. 1329–1340, MR 97g: 46047.

    Article  MathSciNet  MATH  Google Scholar 

  10. H. P. Heinig, Sichun Wang, Maximal Function Estimates of Solutions to General Dispersive Partial Differential Equations, Preprint, Depart- ment of Mathematics and Statistics, McMaster University, Hamilton, Ontario, L8S 4K1 Canada.

    Google Scholar 

  11. H. P. Heinig, Sichun Wang, Maximal Function Estimates of Solutions to General Dispersive Partial Differential Equations, Trans. Amer. Math. Soc. (to appear), CMP 1 458 324.

    Google Scholar 

  12. L. Hörmander, The Analysis of Linear Partial Differential Operators I. Distribution theory and Fourier analysis. Second edition, Springer Study Edition, Springer-Verlag, Berlin, 1990, MR 91m: 35001b, 85g: 35002a.

    MATH  Google Scholar 

  13. T. Kato, K. Yajima, Some Examples of Smooth Operators and the associated Smoothing Effect, Rev. Math. Phys. 1 (1989), pp. 481–496, MR 91i: 47013.

    Article  MathSciNet  MATH  Google Scholar 

  14. C. E. Kenig, G. Ponce, L. Vega, Oscillatory Integrals and Regularity of Dispersive Equations, Indiana Univ. Math. J. 40 (1991), pp. 33–69, MR 92d: 35081.

    Article  MathSciNet  MATH  Google Scholar 

  15. L. Kolasa, Oscillatory integrals and Schrödinger maximal operators, Pacific J. Math. 177 (1997), pp. 77–101, MR 98h: 35043.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Moyua; A. Vargas; L. Vega, Schrödinger maximal function and restriction properties of the Fourier transform, Internat. Math. Res. Notices 1996, pp. 793–815, MR 97k: 42042.

    Google Scholar 

  17. E. Prestini, Radial functions and regularity of solutions to the Schrodinger equation, Monatsh. Math. 109 (1990), pp. 135–143, MR 91j: 35035.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. L. Rubio de Francia, Maximal functions and Fourier transforms, Duke Math. J. 53 (1986), pp. 395–404, MR 87j: 42046.

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Sjölin, Regularity of Solutions to the Schrödinger Equation, Duke Math. J. 55 (1987), pp. 699–715, MR 88j: 35026.

    Article  MathSciNet  MATH  Google Scholar 

  20. C. Sogge, E. M. Stein, Averages of functions over hypersurfaces in R n, Invent. Math. 82 (1985), 543–556, MR 87d: 42030.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Soljanik, Letter communication, April 1990.

    Google Scholar 

  22. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, NJ, 1970, MR 44 #7280.

    MATH  Google Scholar 

  23. E. M. Stein, Maximal functions. I. Spherical means, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), pp. 2174–2175, MR 54 #8133a.

    Article  MathSciNet  MATH  Google Scholar 

  24. E. M. Stein, Harmonic Analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, No. 43, Monographs in Harmonic Analysis, III, Princeton University Press, Princeton, NJ, 1993, MR 95c: 42002.

    MATH  Google Scholar 

  25. E. M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, NJ, 1971, MR 46 #4102.

    MATH  Google Scholar 

  26. R. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), pp. 705–714, MR 57 #23577.

    Article  MathSciNet  MATH  Google Scholar 

  27. L. Vega, Schrödinger Equations: Pointwise Convergence to the Initial Data, Proc. Amer. Math. Soc. 102 (1988), pp. 874–878, MR 89d1: 35046.

    MathSciNet  MATH  Google Scholar 

  28. L. Vega, El multiplicador de Schrödinger, la funcion maximal y los operadores de restrictiön, Tesis doctoral dirigida por Antonio Córdoba Barba, Departamento de Matemáticas, Universidad Autónoma de Madrid, Febrero 1.988.

    Google Scholar 

  29. B. G. Walther, Maximal Estimates for Oscillatory Integrals with Concave Phase, Contemp. Math. 189 (1995), pp. 485–495, MR 96e: 42024.

    MathSciNet  Google Scholar 

  30. Sichun Wang, On the Maximal Operator associated with the Free Schrödinger Equation, Studia Math. 122 (1997), 167–182, CMP 1 432 167.

    MathSciNet  MATH  Google Scholar 

  31. Si Lei Wang, On the Weighted Estimate of the Solution associated with the Schrödinger equation, Proc. Amer. Math. Soc. 113 (1991), 87–92, MR 91k: 35066.

    MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Birkhäuser Boston

About this chapter

Cite this chapter

Walther, B.G. (1999). Some L p(L )– and L 2(L 2)– estimates for oscillatory Fourier transforms. In: Bray, W.O., Stanojević, Č.V. (eds) Analysis of Divergence. Applied and Numerical Harmonic Analysis. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-2236-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2236-1_15

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-7467-4

  • Online ISBN: 978-1-4612-2236-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics