High Reynolds Number [Rθ=O(106)] Boundary Layer Turbulence in the Atmospheric Surface Layer Above Western Utah’s Salt Flats

  • J. C. Klewicki
  • J. F. Foss
  • J. M. Wallace

Abstract

The challenge to experimentally address ultra-high Reynolds number boundary layer flows is both formidable and technologically important. The Western Utah salt flats (Dugway Proving Ground) offers a significant resource in this regard. A summary of the measurements to date and the potential of this natural resource to address the relevant physical science needs in this area are discussed in this communication.

Keywords

Vortex Dust Helium Vorticity Expense 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Biltoft, C. Yee, E., Klewicki, J., Metzger, M. and Bowers, J. 1996 “Turbulence effects on concentration statistics in the atmospheric surface layer,” in the proceedings of the Ninth Joint Conference on Applications of Air Pollution Meteorology with A&WMA, American Meteorological Society, Atlanta Ga.Google Scholar
  2. Bradshaw, P. 1967 “Inactive motion and pressure fluctuations in turbulent boundary layers,” J. Fluid Mech. 30, 241.ADSCrossRefGoogle Scholar
  3. Folz, A., Ong, L. and Wallace, J. 1996 “Near-wall turbulence measurements in the atmospheric surface layer,” University of Maryland Turbulence Research Laboratory report, TRL-96-1, College Park, MD.Google Scholar
  4. Gad-el-Hak, M. and Bandyopadhyay, P. R. 1994 “Reynolds number effects in wall-bounded turbulent flows,” Applied Mech. Rev. 47, 307.ADSCrossRefGoogle Scholar
  5. Garratt, J. R. 1994 The atmospheric boundary layer, Cambridge University Press, Cambridge.Google Scholar
  6. Grant, H. L., Stewart, R. W., and Molliet, A. 1962a “Turbulence spectra from a tidal channel,” J. Fluid Mech. 12, 241.ADSMATHCrossRefGoogle Scholar
  7. Grant, H. L., Stewart, R. W., and Molliet, A. 1962b “The spectrum of a cross-stream component of turbulence in a tidal channel,” J. Fluid Mech. 13, 237.ADSMATHCrossRefGoogle Scholar
  8. Hogstrom, U. 1988 “Non-dimensional wind and temperature profiles in the atmospheric surface layer: A re-evaluation,” Boundary -Layer Met.. 42, 55.ADSCrossRefGoogle Scholar
  9. Klewicki, J. C., Metzger, M. M. and Kelner, E. 1995a “Statistical structure of the axial velocity fluctuations in a near-neutral atmospheric boundary layer in the immediate vicinity of a mud flats ground plane,” University of Utah, Physical Fluid Dynamics Laboratory report, PFD 95-01, Salt Lake City, UT.Google Scholar
  10. Klewicki, J. C., Metzger, M. M., Kelner, E. and Thurlow, E. M. 1995b “Viscous sublayer flow visualizations at Rθ • 1,500,000,” Phys. Fluids 7, 857.ADSCrossRefGoogle Scholar
  11. Klewicki, J. C. and Metzger, M. M. 1996 “Viscous wall region structure in high and low Reynolds number turbulent boundary layers,” AIAA paper no. 96–2009.Google Scholar
  12. Malek, E., Klewicki, J., Biltoft, C., Foss, J., Price, R., McMurtry, P. and Krueger, S. 1996 “Atmospheric surface layer turbulence and environmental science test facility,” a joint Utah State Univeristy — University of Utah proposal to the National Science Foundation, Office of Science and Technology Infrastructure.Google Scholar
  13. Murlis, J., Tsai, H., and Bradshaw P. 1981 “The structure of turbulent boundary layers at low Reynolds numbers,” J. Fluid Mech. 122, 13.ADSCrossRefGoogle Scholar
  14. Panofsky, H. A. and Dutton, J. A. 1984 Atmospheric Turbulence — Models and Methods for Engineering Applications, John Wiley and Sons, New York.Google Scholar
  15. Purtell, L. P., Klebanoff, P. S. and Buckley, F. T. 1981 “Turbulent boundary layer at low Reynolds number,” Phys. Fluids 24, 802.ADSCrossRefGoogle Scholar
  16. Stull, R. B. 1994 “A convective transport theory for surface fluxes,” J. Atmos. Sci. 51, 249.ADSCrossRefGoogle Scholar
  17. Wallace, J. M. and Foss, J. F. 1995 “The measurement of vorticity in turbulent flows” Ann. Rev. Fluid Mech. 27, 469.ADSCrossRefGoogle Scholar
  18. Wyngaard, J. C. 1992 “Atmospheric turbulence,” Ann. Rev. Fluid Mech. 24, 205.ADSCrossRefGoogle Scholar
  19. Yee, E., Chan, R., Kosteniuk, P. R., Chandler, G. M. Biltoft, C. A. and Bowers, J. F. 1994 “Experimental measurements of concentration fluctuations and scales in a dispersing plume in the atmospheric surface layer using a very fast response concentration detector,” J. Appl. Meteor 33, 996.ADSCrossRefGoogle Scholar
  20. Yee, E., Chan, R., Kosteniuk, P. R., Chandler, G. M. Biltoft, C. A. and Bowers, J. F. 1995 “The vertical structure of concentration fluctuation statistics in plumes dispersing in the atmospheric surface layer,” Boundary Layer Met. 76, 41.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1998

Authors and Affiliations

  • J. C. Klewicki
    • 1
    • 2
    • 3
  • J. F. Foss
    • 1
    • 2
    • 3
  • J. M. Wallace
    • 1
    • 2
    • 3
  1. 1.Physical Fluid Dynamics Laboratory, Department of Mechanical EngineeringUniversity of UtahSalt Lake CityUSA
  2. 2.Turbulent Shear Flow Laboratory, Department of Mechanical EngineeringMichigan State UniversityEast LansingUSA
  3. 3.Turbulence Research Laboratory, Department of Mechanical EngineeringUniversity of MarylandCollege ParkUSA

Personalised recommendations