Turbulence Driven Between Counter-rotating Disks in Low Temperature Helium Gas

  • F. Belin
  • J. Maurer
  • P. Tabeling
  • H. Willaime


We present an experimental study of fully developed turbulence between two counter-rotating disks, in low temperature helium gas. In this system, using low temperature helium gas allows to cover a range of microscale Reynolds number Rλ extending from 150 to 5040, under well controlled conditions. It is thus possible to investigate which would be difficult to address by using ordinary fluids. We give two examples: [i] the evolution of the structure function exponent and [ii] that of the hyperflatess of the velocity derivatives, with the Reynolds number. Unexpected results have been found; in particular, the existence of a transition in the dissipative range, around Rλ ≈ 700.


Reynolds Number Inertial Range Dissipative Range Reynolds Number Dependence Velocity Derivative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Transitions to turbulence in helium gas, F. Heslot, B. Castaing and A. Libchaber, Phys Rev. A. 36, 5870 (1987).ADSCrossRefGoogle Scholar
  2. 2.
    Some measurements are presented in Velocity probability density functions of high Reynolds number turbulence, B. Castaing, Y. Gagne, E. Hopfinger, Physica D 46,177, (1990).ADSMATHCrossRefGoogle Scholar
  3. 3.
    Etude de la turbulence dans un jet d’helium gazeux a basse temperature, These, Benoit Chabaud, Universite Joseph Fourier, Grenoble 1 (1992).Google Scholar
  4. 4.
    Statistics of Turbulence between two counter-rotating disks in low temperature helium gas, J. Maurer, P. Tabeling, G. Zocchi, Europhys Lett., 26, 31 (1994).ADSCrossRefGoogle Scholar
  5. 5.
    Probability density functions, skewness and flatness in large Reynolds number turbulence, P. Tabeling, G, Zocchi, F. Belin, J Maurer, H. Willaime, Phys Rev E, 53, 1613 (1996).ADSCrossRefGoogle Scholar
  6. 6.
    H. Tennekees, J.L. Lumley, A first course in turbulence, The MIT Press, 1972Google Scholar
  7. 7.
    C. Lomas, Fundamentals of hot wire anemometry, Cambridge University Press.Google Scholar
  8. 8.
    Statistics of fine-scale velocity in turbulent plane and circular jets, R.A. Antonia, B. R. Satyaprakash, A. K. Hussain, J. Fluid Mech 119, 55 (1982).ADSCrossRefGoogle Scholar
  9. 9.
    Characterization of the low pressure filaments in a three-dimensional flow, O. Cadot, S. Douady, Y. Couder, Phys, Rev 7, 2 (1995).Google Scholar
  10. 10.
    Measurement of the scaling of the dissipation at high Reynolds numbers, G. Zocchi, P. Tabeling, J. Maurer, H. Willaime, Phys Rev E, 50, 3693 (1994).ADSCrossRefGoogle Scholar
  11. 11.
    “Turbulence,” by U. Frisch, Cambridge University Press, 1995MATHGoogle Scholar
  12. 12.
    Extended self similarity in turbulent flows, R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, F. Massaioli, S. Succi, Phys Rev E. 48, 1 (1993).CrossRefGoogle Scholar
  13. 13.
    Exponents of the structure function in an Helium experiment, F. Belin, P. Tabeling, H. Willaime, Physica D, 93, 52 (1996).MATHCrossRefGoogle Scholar
  14. 14a.
    Reynolds number dependence of skewness and flatness factors of turbulent velocity derivatives, C. W. Van Atta and R. A. Antonia, Phys Fluids 23, 252 (1980);ADSCrossRefGoogle Scholar
  15. 14b.
    see also a compilation in The multifractal spectrum of the dissipation field in turbulent flows, Meneveau C. M., Sreenivasan K.R., Nucl Phys B Proc Suppl, 2, 49 (1987).ADSCrossRefGoogle Scholar
  16. 15a.
    Higher order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence, R. M Kerr, J Fluid Mech 153, 31 (1985),ADSMATHCrossRefGoogle Scholar
  17. 15b.
    The spatial structure and statistical properties of homogeneous turbulence,. A. Vincent and M. Meneguzzi, J Fluid Mech 225, 1 (1991),ADSMATHCrossRefGoogle Scholar
  18. 15c.
    The structure of intense voracity in isotropic turbulence, Jimenez J., Wray A. A., Saffman P. G. and Rogallo, R.S., J Fluid Mech 225, 65 (1993).MathSciNetADSCrossRefGoogle Scholar
  19. 16.
    Observation of worms between counter-rotating cylinders, F. Belin, J. Maurer, P. Tabeling, H. Willaime, Journal Phys II, 6, 1 (1996).ADSGoogle Scholar
  20. 17.
    Universality and Scaling in Fully Developed Turbulence, M. Nelkin, Advances in Physics 43, 143 (1994).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1998

Authors and Affiliations

  • F. Belin
    • 1
  • J. Maurer
    • 1
  • P. Tabeling
    • 1
  • H. Willaime
    • 1
  1. 1.Laboratoire de Physique StatistiqueEcole Normale SupérieureParisFrance

Personalised recommendations