Advertisement

Skeletal Development in Young Females: Endogenous Versus Exogenous Factors

  • Velimir Matkovic
  • Mario Skugor
  • Nancy Badenhop
  • John Landoll
  • Jasminka Ilich
Part of the Proceedings in the Serono Symposia USA Series book series (SERONOSYMP)

Abstract

The most critical period in skeletal development is during the time of the most rapid bone modeling and turnover of the adolescence. The process of bone modeling that takes place from birth until the cessation of longitudinal bone growth is characterized by changes in the volume and the shape of the bones. Thereafter, bone tissue within the existing skeletal structure is continuously being formed and resorbed with minimal change in bone size through the remodeling process (1). From infancy through late adolescence the activity of bone formation predominates, resulting in a steady accumulation of bone mass. On average, most of the skeletal mass is accumulated by the age of 18 (Fig. 3.1) (2, 3). Thereafter, there is a minimal change in bone mass and density with age up to the time of menopause. Some skeletal sites begin to lose bone immediately after the age of 18 (proximal femur and trabecular bone in the vertebrae), and the other sites show continuous apposition of bone up to the time of menopause (forearm and total spine) (3).

Keywords

Bone Mineral Density Bone Mass Calcium Intake Young Female Peak Bone Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Matkovic V. Bone turnover and skeletal development revisited. J Clin Endocrinol Metab 1996; 81: 2013–16.PubMedCrossRefGoogle Scholar
  2. 2.
    Theintz G, Buchs B, Rizzoli R, Slosman D, Clavien H, and Sizonenko PC, et al. Longitudinal monitoring of bone mass accumulation in healthy adolescents: evidence for a marked reduction after 16 years of age at the levels of lumbar spine and femoral neck in female subjects. J Clin Endocrinol Metab 1992; 75: 1060–5.PubMedCrossRefGoogle Scholar
  3. 3.
    Matkovic V, Jelic T, Wardlaw GM, Mich JZ, Goel PK, Wright JK, et al. Timing of peak bone mass in caucasian females and its implication for the prevention of osteoporosis. Inference from a cross-sectional model. J Clin Invest 1994; 93: 799–808.PubMedCrossRefGoogle Scholar
  4. 4.
    Matkovic V, Fontana D, Tominac C, Goel PK, Chesnut CH. Factors which influence peak bone mass formation: a study of calcium balance and the inheritance of bone mass in adolescent females. Am J Clin Nutr 1990; 52: 878–88.PubMedGoogle Scholar
  5. 5.
    Klisovic D, Mich JZ, Skugor M, Young AP, Matkovic V. Different distribution of growth related gain in weight, lean body mass, and bone area according to vitamin-D-receptor gene (VDR) polymorphism within distinct estrogen receptor (ER) genotype. J Bone Min Res 1996; 11: S211.Google Scholar
  6. 6.
    Matkovic V, Skugor M, Ilich JZ, Klisovic D, Badenhop NE, Nagode LA, et al. Serum leptin and 03-adrenergic-receptor gene (parg) polymorphism in osteoarthritic (OA) and osteoporotic (OP) patients. J Bone Miner Res 1997; 12: S257.Google Scholar
  7. 7.
    Skugor M, Mich JZ, Badenhop NE, Matkovic V. Relative distribution of skeletal minerals in the body with age. J Bone Miner Res 1995; 10: 5465.Google Scholar
  8. 8.
    Ilich JZ, Skugor M, Badenhop NE, Landoll JD, Matkovic V. Time since menarche is positively related to bone mass of total body and radius in premenopausal women. J Bone Miner Res 1997; 12: S252.Google Scholar
  9. 9.
    Matkovic V, Ilich JZ, Skugor M, Badenhop NE, Clairmont A, Goel P, et al. Leptin is inversely related to age at menarche in human females. J Clin Endocrinol Metab 1997; 82: 3239–45.PubMedCrossRefGoogle Scholar
  10. 10.
    Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372: 425–32.PubMedCrossRefGoogle Scholar
  11. 11.
    Matkovic V, Ilich JZ, Badenhop NE, Skugor M, Clairmont A, Klisovic D, et al. Gain in body fat is inversely related to the nocturnal rise in serum leptin level in young females. J Clin Endocrinol Metab 1997; 82: 1368–72.PubMedCrossRefGoogle Scholar
  12. 12.
    Ilich JZ, Hangartner TA, Skugor M, Roche AF, Goel P, Matkovic V. Skeletal age as a determinant of bone mass in young females. Skeletal Radiol 1996; 25: 431–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Skugor M, Ilich JZ, Badenhop NE, Landoll JD, Nagode LA, Matkovic V. Influence of puberty on body composition and bone mass over a 1-year period. J Bone Miner Res 1997; 12: S252.Google Scholar
  14. 14.
    Blumsohn A, Hannon RA, Wrate R, Barton J, Al-Dehaimi AW, Colwell A, et al. Biochemical markers of bone turnover in girls during puberty. Clin Endocrinol 1994; 40: 663–70.CrossRefGoogle Scholar
  15. 15.
    Matkovic V. Calcium metabolism and calcium requirements during skeletal modeling and consolidation of bone mass. Am J Clin Nutr 1991; 54: 2455–2605.Google Scholar
  16. 16.
    Matkovic V, Ilich JZ, Andon MB, Hsieh LC, Tzagournis MA, Lagger BJ, et al. Urinary calcium, sodium, and bone mass of young females. Am J Clin Nutr 1995; 62: 417–25.PubMedGoogle Scholar
  17. 17.
    Food and Nutrition Board, Institute of Medicine. Washington DC: Dietary reference intakes. National Academy Press, 1997.Google Scholar
  18. 18.
    NIH Consensus Development Panel. Optimal calcium intake. NIH Consensus Conference. JAMA 1994; 272: 1942–8.CrossRefGoogle Scholar
  19. 19.
    Ilich JZ, Badenhop NE, Jelic T, Clairmont AC, Nagode LA, Matkovic V. Calcitriol and bone mass accumulation in females during puberty. Calcif Tissue Int 1997; 61: 104–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Andon MB, Ilich JZ, Tzagournis MA, Matkovic V. Magnesium balance in adolescent females consuming a low or high calcium diet. Am J Clin Nutr 1996; 63: 950–3.PubMedGoogle Scholar
  21. 21.
    McKenna AA, Ilich JZ, Andon MB, Wang C, Matkovic V. Zinc balance in adolescent females consuming a low-or high-calcium diet. Am J Clin Nutr 1997; 65: 1460–4.PubMedGoogle Scholar
  22. 22.
    Ilich JZ, McKenna AA, Skugor M, Badenhop NE, Andon MB, Matkovic V. Effects of long-term calcium supplementation on iron status in adolescent females. J Am Diet Assoc 1997;97:A-65.CrossRefGoogle Scholar
  23. 23.
    Matkovic V, Klisovic D, Ilich JZ. Epidemiology of fractures during growth and aging. Phys Med Rehab Clin North Am 1995; 6: 415–39.Google Scholar
  24. 24.
    Buhr AJ, Cooke AM. Fracture patterns. Lancet 1959; 1: 531–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Alffram PA, Bauer GCH. Epidemiology of fractures of the forearm. J Bone Joint Surg 1962; 44A: 105–14.PubMedGoogle Scholar
  26. 26.
    Landin LA. Fracture patterns in children. Acta Orthop Scand 1983;54 Suppl 202: 5–95.Google Scholar
  27. 27.
    Bailey DA, Wedge JH, McCulloch RG, Martin AD, Bernhardson SC. Epidemiology of fractures of the distal end of the radius in children as associated with growth. J Bone Joint Surg Am 1989; 71A: 1225–31.PubMedGoogle Scholar
  28. 28.
    Landin LA, Nilsson BE. Bone mineral content in children with fractures. Clin Orthop 1983; 178: 292–6.PubMedGoogle Scholar
  29. 29.
    Chan GM, Hess M, Hollis J, Book LS. Bone mineral status in childhood accidental fractures. Am J Dis Child 1984; 138: 569–70.PubMedGoogle Scholar
  30. 30.
    Verd Vellespir S, Dominguez Sanches J, Gonzales Quintial M, Vidal Mas M, Soler Mariano AC, Company De Roque C, Marcos Sevilla Th. Asociacion entre el contenido en calcio de las aguas de consumo y las fracturas en los ninos. An Esp Pediatr 1992; 37: 461–5.Google Scholar
  31. 31.
    Wyshak G, Frisch RE. Carbonated beverages, dietary calcium, the dietary calcium/phosphorus ratio, and bone fractures in girls and boys. J Adolesc Health 1994; 15: 210–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Bonjour JP, Carrie AL, Ferrarri S, Clavien H, Slosman D, Theintz G, Rizzoli R. Calcium-enriched foods and bone mass growth in prepubertal girls: a randomized, double-blind, placebo-controlled trial. J Clin Invest 1997; 99: 1287–94.PubMedCrossRefGoogle Scholar
  33. 33.
    Lloyd T, Andon MB, Rollings N, Martel JK, Landis RJ, Demers LM, Eggli DF. Calcium supplementation and bone mineral density in adolescent girls. JAMA 1993; 270: 841–4.PubMedCrossRefGoogle Scholar
  34. 34.
    Lee WTK, Leung SSF, Wang SF, Xu YC, Zeng WP, Lau J, et al. Double-blind, controlled calcium supplementation and bone mineral accretion in children accustomed to a low-calcium diet. Am J Clin Nutr 1994; 60: 744–50.PubMedGoogle Scholar
  35. 35.
    Johnston CC Jr, Miller JZ, Slemenda CW, Reister TK, Hui S, Christian JC, Peacock M. Calcium supplementation and increases in bone mineral density in children. N Engl J Med 1992; 327: 82–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Heaney RP. Interpreting trials of bone-active agents. Am J Med 1995; 98: 329–30.PubMedCrossRefGoogle Scholar
  37. 37.
    Slemenda C, Reister TK, Peacock M, Johnston CC, Jr. Bone growth in children following the cessation of calcium supplementation. J Bone Miner Res 1993; 8: S154.Google Scholar
  38. 38.
    Matkovic V, Kostial K, Simonovic I, Buzina R, Brodarec A, Nordin BEC. Bone status and fracture rates in two regions of Yugoslavia. Am J Clin Nutr 1979; 32: 540–9.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1998

Authors and Affiliations

  • Velimir Matkovic
  • Mario Skugor
  • Nancy Badenhop
  • John Landoll
  • Jasminka Ilich

There are no affiliations available

Personalised recommendations