Acid-Base Imbalance and the Skeleton

  • David A. Bushinsky
Part of the Proceedings in the Serono Symposia USA Series book series (SERONOSYMP)


Metabolic Acidosis Respiratory Acidosis Bone Calcium Calcium Efflux Renal Fluid Electrolyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kurtz I, Maher T, Hulter HN, Schambelan M, Sebastian A. Effect of diet on plasma acid-base composition in normal humans. Kidney Int 1983;24:670–80.PubMedCrossRefGoogle Scholar
  2. 2.
    Bushinsky DA. Metabolic acidosis. In: Jacobson HR, Striker GE, Klahr S, eds. The principles and practice of nephrology. St. Louis: Mosby, 1995:924–32.Google Scholar
  3. 3.
    Frassetto LA, Morris RC, Jr, Sebastian A. Effect of age on blood acid-base composition in adult humans: role of age-related renal functional decline. Am J Physiol (Renal Fluid Electrolyte Physiol 40) 1996;271:F1114–22.Google Scholar
  4. 4.
    Frassetto LA, Sebastian A. Age and systemic acid-base equilibrium: analysis of published data. J Gerontol 1996;51A:B91–9.Google Scholar
  5. 5.
    Lemann J, Jr, Adams ND, Gray RW. Urinary calcium excretion in human beings. N Engl J Med 1979;301:535–41.PubMedCrossRefGoogle Scholar
  6. 6.
    Lemann J, Jr, Litzow JR, Lennon EJ. The effects of chronic acid loads in normal man: further evidence for the participation of bone mineral in the defense against chronic metabolic acidosis. J Clin Invest 1966;45:1608–14.PubMedCrossRefGoogle Scholar
  7. 7.
    Litzow JR, Lemann J, Jr, Lennon EJ. The effect of treatment of acidosis on calcium balance in patients with chronic azotemic renal disease. J Clin Invest 1967;46:280–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Widdowson EM, McCance RA, Spray CM. The chemical composition of the human body. Clin Sci 1951;10:113–25.Google Scholar
  9. 9.
    Widdowson EM, Dickerson JWT. Chemical composition of the body. In: Comar CL, Bronner F, eds. Mineral metabolism. New York: Academic Press, 1964:1–247.Google Scholar
  10. 10.
    Sutton RAL, Wong NLM, Dirks JH. Effects of metabolic acidosis and alkalosis on sodium and calcium transport in the dog kidney. Kidney Int 1979;15:520–33.PubMedCrossRefGoogle Scholar
  11. 11.
    Kraut JA, Mishler DR, Kurokawa K. Effect of colchicine and calcitonin on calcemic response to metabolic acidosis. Kidney Int 1984;25:608–12.PubMedCrossRefGoogle Scholar
  12. 12.
    Bushinsky DA, Krieger NS, Geisser DI, Grossman EB, Coe FL. Effects of pH on bone calcium and proton fluxes in vitro. Am J Physiol (Renal Fluid Electrolyte Physiol 14) 1983;245:F204–9.Google Scholar
  13. 13.
    Bushinsky DA, Goldring JM, Coe FL. Cellular contribution to pH-mediated calcium flux in neonatal mouse calvariae. Am J Physiol (Renal Fluid Electrolyte Physiol 17) 1985;248:F785–9.Google Scholar
  14. 14.
    Bushinsky DA, Sessler NE, Glena RE, Featherstone JDB. Proton-induced physicochemical calcium release from ceramic apatite disks. J Bone Miner Res 1994;9:213–20.PubMedCrossRefGoogle Scholar
  15. 15.
    Bushinsky DA, Lechleider RJ. Mechanism of proton-induced bone calcium release: calcium carbonate dissolution. Am J Physiol (Renal Fluid Electrolyte Physiol 22) 1987;253:F998–1005.Google Scholar
  16. 16.
    Bushinsky DA, Sessler NE. Critical role of bicarbonate in calcium release from bone. Am J Physiol (Renal Fluid Electrolyte Physiol 32) 1992;263:F510–5.Google Scholar
  17. 17.
    Bushinsky DA, Levi-Setti R, Coe FL. Ion microprobe determination of bone surface elements: effects of reduced medium pH. Am J Physiol (Renal Fluid Electrolyte Physiol 19) 1986;250:F1090–7.Google Scholar
  18. 18.
    Bushinsky DA, Wolbach W, Sessler NE, Mogilevsky R, Levi-Setti R. Physicochemical effects of acidosis on bone calcium flux and surface ion composition. J Bone Miner Res 1993;8:93–102.PubMedCrossRefGoogle Scholar
  19. 19.
    Bergstrom WH, Ruva FD. Changes in bone sodium during acute acidosis in the rat. Am J Physiol 1960;198:1126–8.PubMedGoogle Scholar
  20. 20.
    Bettice JA, Gamble JL, Jr. Skeletal buffering of acute metabolic acidosis. Am J Physiol 1975;229:1618–24.PubMedGoogle Scholar
  21. 21.
    Bettice JA. Skeletal carbon dioxide stores during metabolic acidosis. Am J Physiol (Renal Fluid Electrolyte Physiol 16) 1984;247:F326–30.Google Scholar
  22. 22.
    Bushinsky DA, Lam BC, Nespeca R, Sessler NE, Grynpas MD. Decreased lone carbonate content in response to metabolic, but not respiratory, acidosis. Am J Physiol (Renal Fluid Electrolyte Physiol 34) 1993;265:F530–6.Google Scholar
  23. 23.
    Bushinsky DA. Net proton influx into bone during metabolic, but not respiratory, acidosis. Am J Physiol (Renal Fluid Electrolyte Physiol 23) 1988;254:F306–10.Google Scholar
  24. 24.
    Bushinsky DA. Effects of parathyroid hormone on net proton flux from neonatal mouse calvariae. Am J Physiol (Renal Fluid-Electrolyte Physiol 21) 1987; 252:F585–9.Google Scholar
  25. 25.
    Chabala JM, Levi-Setti R, Bushinsky DA. Alteration in surface ion composition of cultured bone during metabolic, but not respiratory, acidosis. Am J Physiol (Renal Fluid Electrolyte Physiol 30) 1991;261:F76–84.Google Scholar
  26. 26.
    Bushinsky DA, Chabala JM, Levi-Setti R. Ion microprobe analysis of bone surface elements: effects of 1,25(OH)2D3. Am J Physiol (Endocrinol Met Physiol 20) 1989;257:E815–22.Google Scholar
  27. 27.
    Bushinsky DA, Chabala JM, Levi-Setti R. Ion microprobe analysis of mouse calvariae in vitro: evidence for a “bone membrane.” Am J Physiol (Endocrinol Metab 19) 1989;256:E152–8.Google Scholar
  28. 28.
    Bushinsky DA, Chabala JM, Levi-Setti R. Comparison of in vitro and in vivo “Ca labeling of bone by scanning ion microprobe. Am J Physiol (Endocrinol Metab 22) 1990;259:E586–92.Google Scholar
  29. 29.
    Bushinsky DA, Gavrilov K, Chabala JM, Levi-Setti R. Metabolic acidosis decreases potassium content of bone. J Am Soc Nephrol 1996;7:1787.Google Scholar
  30. 30.
    Monk RD, Bushinsky DA. Pathogenesis of idiopathic hypercalciuria. In: Coe FL, Favus M, Pak C, Parks J, Preminger G, eds. Kidney stones: medical and surgical management. New York: Raven Press, 1996:759–72.Google Scholar
  31. 31.
    Pasquale SM, Messier AA, Shea ML, Schaefer KE. Bone CO2-titration curves in acute hypercapnia obtained with a modified titration technique. J Appl Physiol 1980;48:197–201.PubMedGoogle Scholar
  32. 32.
    Kraut JA, Mishler DR, Singer FR; Goodman WG. The effects of metabolic acidosis on bone formation and bone resorption in the rat. Kidney Int 1986;30:694–700.PubMedCrossRefGoogle Scholar
  33. 33.
    Arnett TR, Dempster DW. Effect of pH on bone resorption by rat osteoclasts in vitro. Endocrinology 1986;119:119–24.PubMedCrossRefGoogle Scholar
  34. 34.
    Goldhaber P, Rabadjija L. H` stimulation of cell-mediated bone resorption in tissue culture. Am J Physiol (Endocrinol Metab 16) 1987;253:E90–8.Google Scholar
  35. 35.
    Bushinsky DA. Net calcium efflux from live bone during chronic metabolic, but not respiratory, acidosis. Am J Physiol (Renal Fluid Electrolyte Physiol 25) 1989;256:F836–42.Google Scholar
  36. 36.
    Krieger NS, Sessler NE, Bushinsky DA. Acidosis inhibits osteoblastic and stimulates osteoclastic activity in vitro. Am J Physiol (Renal Fluid Electrolyte Physiol 31) 1992;262:F442–8.Google Scholar
  37. 37.
    Bushinsky DA. Stimulated osteoclastic and suppressed osteoblastic activity in metabolic but not respiratory acidosis. Am J Physiol (Cell Physiol 37) 1995; 268:C80–8.Google Scholar
  38. 38.
    Frick KK, Jiang L, Bushinsky DA. Metabolic acidosis alters specific gene responses in primary mouse calvarial cells. Am J Physiol (Cell Physiol 41) 1997; 272:C1450–6.Google Scholar
  39. 39.
    Bushinsky DA. Metabolic alkalosis decreases bone calcium efflux by suppressing osteoclasts and stimulating osteoblasts. Am J Physiol (Renal Fluid Electrolyte Physiol 40) 1996;271:F216–22.Google Scholar
  40. 40.
    Sprague SM, Krieger NS, Bushinsky DA. Greater inhibition of in vitro bone mineralization with metabolic than respiratory acidosis. Kidney Int 1994; 46:1199–206.PubMedCrossRefGoogle Scholar
  41. 41.
    Bushinsky DA, Nilsson EL. Additive effects of acidosis and parathyroid hormone on mouse osteoblastic and osteoclastic function. Am J Physiol (Cell Physiol 38) 1995;269:C1364–70.Google Scholar
  42. 42.
    Barzel US. The effect of excessive acid feeding on bone. Calcif Tissue Res 1969; 4:94–100.PubMedCrossRefGoogle Scholar
  43. 43.
    Burnell JM. Changes in bone sodium and carbonate in metabolic acidosis and alkalosis in the dog. J Clin Invest 1971;50:327–31.PubMedCrossRefGoogle Scholar
  44. 44.
    Bushinsky DA, Krieger NS. Integration of calcium metabolism in the adult. In: Coe FL, Favus MJ, eds. Disorders of bone and mineral metabolism. New York: Raven Press, 1992:417–32.Google Scholar
  45. 45.
    Bushinsky DA, Sessler NE, Krieger NS. Greater unidirectional calcium efflux from bone during metabolic, compared with respiratory, acidosis. Am J Physiol (Renal Fluid Electrolyte Physiol 31) 1992;262:F425–31.Google Scholar
  46. 46.
    Bushinsky DA, Krieger NS. Role of the skeleton in calcium homeostasis. In: Seldin DW, Giebisch G, eds. The kidney: physiology and pathophysiology. New York: Raven Press, 1992:2395–430.Google Scholar
  47. 47.
    Arnett TR, Dempster DW. A comparative study of disaggregated chick and rat osteoclasts in vitro: effects of calcitonin and prostaglandins. Endocrinology 1987;120:602–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Bushinsky DA, Gavrilov K, Stathopoulos VM, Krieger NS, Chabala JM, Levi-Setti R. Effects of osteoclastic resorption on bone surface ion composition. Am J Physiol (Cell Physiol 40) 1996;271:C1025–31.Google Scholar
  49. 49.
    Sebastian A, Harris ST, Ottaway JH, Todd KM, Morris RC, Jr. Improved mineral balance and skeletal metabolism in postmenopausal women treated with potassium bicarbonate. N Engl J Med 1994;330:1776–81.PubMedCrossRefGoogle Scholar
  50. 50.
    Kraut JA, Coburn JW. Bone, acid, and osteoporosis. N Engl J Med 1994; 330:1821–2.PubMedCrossRefGoogle Scholar
  51. 51.
    Mc Sherry E, Morris RC. Attainment and maintenance of normal stature with alkali therapy in infants and children with classic renal tubular acidosis. J Clin Invest 1978;61:509–27.CrossRefGoogle Scholar
  52. 52.
    MLSherry E. Acidosis and growth in nonuremic renal disease. Kidney Int 1978;14:349–54.CrossRefGoogle Scholar
  53. 53.
    Challa A, Krieg RJ, Jr, Thabet MA, Veldhuis JD, Chan JC. Metabolic acidosis inhibits growth hormone secretion in rats: mechanism of growth retardation. Am J Physiol 1993;265:E547–53.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1998

Authors and Affiliations

  • David A. Bushinsky

There are no affiliations available

Personalised recommendations