Skip to main content

Decoupling Inequalities: A Second Generation of Martingale Inequalities

  • Chapter
Probability Towards 2000

Part of the book series: Lecture Notes in Statistics ((LNS,volume 128))

  • 1400 Accesses

Abstract

The theory of martingale inequalities has been central in the development of modern probability theory. Recently this theory has been expanded widely through the introduction of decoupling inequalities, which provide natural extensions in cases where the variables take values in general spaces or when a martingale structure is not available. Typically, decoupling inequalities are used to transform problems involving sums of dependent random variables into problems involving sums of (conditionally) independent random variables. This transformation particularly permits the use of traditional results when dealing with sums of dependent variables. In this paper an account of the theory of decoupling inequalities is given with emphasis on its relations to the theory of martingale inequalities, and its applications and extensions to a wide range of problems, including best constants on martingale inequalities, stopping time problems, U-statistics, random graphs, quadratic forms and stochastic integration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arcones, M. and Giné, E. (1993). Limit theorems for U-processes. Ann. Probab. 21 1494–1542.

    Article  MathSciNet  MATH  Google Scholar 

  2. Blackwell, D. (1946). On an equation of Wald. Ann. Math. Statist. 17 84–87.

    Article  MathSciNet  Google Scholar 

  3. Bourgain, J. and Tzafriri, L. (1987). Invertibility of ‘large’ submatrices with applications to the geometry of Banach spaces and harmonic analysis. Israel J. Math. 57 137–224.

    Article  MathSciNet  MATH  Google Scholar 

  4. Burkholder, D. L. (1973). Distribution function inequalities for martingales. Ann. Probab. 1 19–42.

    Article  MathSciNet  MATH  Google Scholar 

  5. Burkholder, D. L. (1983). A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions. Conference on harmonic Analysis in Honor of A. Zygmund (W. Beckner, A.P. Calderón, R. Fefferman, and P. Jones, eds.), Wadsworth, Belmont, CA. pp. 270–286.

    Google Scholar 

  6. Chow, Y. S. and Teicher, H. (1988). Probability Theory: Independence, Interchangeability, Martingales. Second Ed. Springer, New York.

    MATH  Google Scholar 

  7. Chow, Y. S., de la Peña, V. H. and Teicher, H. (1993). Wald’s lemma for a class of de-normalized U-statistics. Ann. Probab. 21 1151–1158.

    Article  MathSciNet  MATH  Google Scholar 

  8. de la Peña, V. H. (1992a). Decoupling and Khintchine’s inequalities for U- statistics. Ann. Probab., Vol. 20 1877–1892.

    Article  MATH  Google Scholar 

  9. de la Peña, V. H. (1992b). Sharp bounds on the Lp norm of a randomly stopped multilinear form with an application to Wald’s equation. In Probab. in Banach Spaces VIII ( R. M. Dudley et al. eds.). Birkhauser, New York.

    Google Scholar 

  10. de la Peña, V. H. (1992c). Nuevas desigualdades para U-estadisticas y gráficas aleatorias. Proceedings of the fourth Latin American Congress of Probab. and Math. Statist. (CLAPEM), México City, September 1990.

    Google Scholar 

  11. de la Peña, V. H. (1994). A bound on the moment generating function of a sum of dependent variables with an application to simple random sampling without replacement. Ann. Inst. Henry Poincaré. Probabilités et Statistiques, 30 197–211.

    MATH  Google Scholar 

  12. de la Peña, V. H. (1995). Correction to: A bound on the moment generating function of a sum of dependent variables with an application to simple random sampling without replacement. Ann. Inst. Henry Poincaré. Probabilités et Statistiques, 31 703–704.

    MATH  Google Scholar 

  13. de la Peña, V. H. and Giné, E. (1996). Preliminary version of a book on decoupling.

    Google Scholar 

  14. de la Peña, V. H. and Govindarajulu, Z. (1992). Bounds for second moment of a randomly stopped sum of independent variables. Statist. Probab. Letters 14 275–281.

    Article  MATH  Google Scholar 

  15. de la Peña, V. H. and Lai, T. L. (1997). Wald’s equation and asymptotic bias of randomly stopped U-statistics. Proc. Amer. Math. Soc. 125, 917–925.

    Article  MathSciNet  MATH  Google Scholar 

  16. de la Peña, V. H. and Lai, T. L. (1995). Moments of randomly stopped U- statistics. To appear in Ann. Probab.

    Google Scholar 

  17. de la Peña, V. H., Montgomery-Smith, S. J. and Szulga, J. (1994). Contraction and decoupling inequalities for multilinear forms and U-statistics. Ann. Probab. 22 1745–1765.

    Article  MathSciNet  MATH  Google Scholar 

  18. de la Peña, V. H. and Montgomery-Smith, S. J. (1994). Bounds on the tail probability of U-statistics and quadratic forms. Bull. Amer. Math. Soc. 31 223–227.

    Article  MathSciNet  MATH  Google Scholar 

  19. de la Peña, V. H. and Montgomery-Smith, S. J. (1995). Decoupling inequalities for the tail probabilities of multivariate U-statistics. Ann. Probab. 23 806–816.

    Article  MathSciNet  MATH  Google Scholar 

  20. Giné, E. and Zinn, J. (1994). A remark on convergence in distribution of U- statistics. Ann. Probab. 22 117–125.

    Article  MathSciNet  MATH  Google Scholar 

  21. Griffin, P. S. and McConnell, T. R. (1992). On the position of a random walk at the time of first exit from a sphere. Ann. Probab. 20 825–854.

    Article  MathSciNet  MATH  Google Scholar 

  22. Hitczenko, P. (1988). Comparison of moments for tangent sequences of random variables. Probab. Theory Related Fields. 78 223–230.

    Article  MathSciNet  MATH  Google Scholar 

  23. Hitczenko, P. (1990). Best constants in martingale version of Rosenthal’s inequality. Ann. Probab. 18 1656–1668.

    Article  MathSciNet  MATH  Google Scholar 

  24. Hitczenko, P. (1994a). Sharp inequality for randomly stopped sums of independent non-negative random variables. Stochastic Process. Appl. 51 63–73.

    Article  MathSciNet  MATH  Google Scholar 

  25. Hitczenko, P. (1994b). On a domination of sums of random variables by sums of conditionally independent ones. Ann. Probab. 22 453–468.

    Article  MathSciNet  MATH  Google Scholar 

  26. Janson, S. and Nowicki, K. (1991). The asymptotic distributions of generalized U-statistics with applications to random graphs. Probab. Theory Related Fields. 90 341–375.

    Article  MathSciNet  MATH  Google Scholar 

  27. Jakubowski, A. (1986). Principle of conditioning in limit theorems for sums of random variables. Ann. Probab. 14 902–915.

    Article  MathSciNet  MATH  Google Scholar 

  28. Klass, M. J. (1988). A best possible improvement of Wald’s equation Ann. Probab. 16 840–853.

    Article  MathSciNet  MATH  Google Scholar 

  29. Klass, M. J. (1990). Uniform lower bounds for randomly stopped Banach space valued random sums. Ann. Probab. 18 790–809.

    Article  MathSciNet  MATH  Google Scholar 

  30. Kou, S. G., and Ying, Z. (1995). A central limit theorem for a sequence of 2 x 2 tables. Preprint.

    Google Scholar 

  31. Kwapien, S. and Woyczynski, W. (1992). Random series and stochastic integrals: simple and multiple. Birkhauser, NY.

    Book  Google Scholar 

  32. McConnell, T.R. and Taqqu, M.S. (1986). Decoupling inequalities for multilinear forms in independent symmetric random variables. Ann. Probab. 14 943–954.

    Article  MathSciNet  MATH  Google Scholar 

  33. Montgomery-Smith, S. J. (1993). Comparison of sums of independent identically distributed random variables. Probab. Math. Statist. 14 281–285.

    MathSciNet  MATH  Google Scholar 

  34. Nolan, D. and Pollard D. (1987). U-processes: rates of convergence. Ann. Statist. 15 780–799.

    Article  MathSciNet  MATH  Google Scholar 

  35. Wald, A. (1945). Some generalizations of the theory of cumulative sums of random variables. Ann. Math. Statist. 16 287–293.

    Article  MathSciNet  MATH  Google Scholar 

  36. Zinn, J. (1985). Comparison of Martingale differences. Probab. in Banach Spaces V, Lecture Notes in Math. 1153 453–457. Springer-Ver lag, Berlin.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

De La Peña, V.H. (1998). Decoupling Inequalities: A Second Generation of Martingale Inequalities. In: Accardi, L., Heyde, C.C. (eds) Probability Towards 2000. Lecture Notes in Statistics, vol 128. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2224-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2224-8_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98458-2

  • Online ISBN: 978-1-4612-2224-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics