Advertisement

Response of High-Strength Ceramics to Plane and Spherical Shock Waves

  • J. Cagnoux
  • J.-Y. Tranchet
Part of the High-Pressure Shock Compression of Condensed Matter book series (SHOCKWAVE)

Abstract

The word “ceramics” comes from the Greek “χεραμος” meaning either potter’s clay or pottery, depending on the author. Nowadays, this term also includes materials produced from chemically defined constituents (e.g., oxides, fluorides, borides, carbides, and nitrides) which are usually prepared components rather than natural raw materials. This chapter addresses these last materials and, more precisely, those among them with very high mechanical properties.

Keywords

Shock Wave Shock Compression Elsevier Science Publisher Intergranular Crack Plate Impact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. Prager, closing comments by session chairmen, in Mechanical Behaviour of Materials under Dynamic Loads (ed. U.S. Lindhom), Springer-Verlag, New York, p. 403 (1968).Google Scholar
  2. [2]
    P. Chartagnae, in Shock Compression of Condensed Matter—1989 (ed. S.C. Schmidt, J.N. Johnson, and L.W. Davison), Elsevier Science Publishers, Amsterdam, pp. 923–930 (1990).Google Scholar
  3. [3]
    W.H. Gust and E.B. Royce, J. Appl. Phys. 42, pp. 276–295 (1971).ADSCrossRefGoogle Scholar
  4. [4]
    W.H. Gust, A.C. Holt, and E.B. Royce, J. Appl. Phys. 44, pp. 550–560 (1973).ADSCrossRefGoogle Scholar
  5. [5]
    D.E. Munson and R.J. Lawrence, J. Appl. Phys. 50, pp. 6272–6282 (1979).ADSCrossRefGoogle Scholar
  6. [6]
    P. Kumar and R.J. Clifton, J. Appl. Phys. 48, pp. 4850–4852 (1977).ADSCrossRefGoogle Scholar
  7. [7]
    F. Longy and J. Cagnoux, in Shock Compression of Condensed Matter—1989 (ed. S.C. Schmidt, J.N. Johnson, and L.W. Davison), Elsevier Science Publishers, Amsterdam, pp. 441–444 (1990).Google Scholar
  8. [8]
    G.T. Gray III, in High-Pressure Shock Compression of Solids (ed. J.R. Asay and M. Shahinpoor), Springer-Verlag, New York, pp. 187–215 (1993).Google Scholar
  9. [9]
    E.K. Beauchamp, R.A. Graham, and M.J. Carr, Mater. Res. Soc. Sym. Proc. 24, p. 281 (1984).CrossRefGoogle Scholar
  10. [10]
    F. Longy and J. Cagnoux, in Proceedings of the International Conference on Impact Loading and Dynamic Behavior of Materials (ed. C.Y. Chiem, H.D. Kunze, and L.W. Meyer), DGM Informationsgeselleschaft mbH, Oberursels, Germany, pp. 1001–1008 (1988).Google Scholar
  11. [11]
    Y. Yeshurun, D.G. Brandon, A. Venkert, and Z. Rosenberg, J. Phys. Colloq. C3, 49, pp. 11–18 (1988).Google Scholar
  12. [12]
    L.H.L. Louro and M.A. Meyers, J. Mater. Sci. 24, pp. 2516–2532 (1989).ADSCrossRefGoogle Scholar
  13. [13]
    G. Raiser, R.J. Clifton, and M. Ortiz, Mech. of Mater. 10, pp. 43–58 (1989).CrossRefGoogle Scholar
  14. [14]
    W.D. Winkler and A.J. Stilp, in Shock Compression of Condensed Matter—1991 (ed. S.C. Sehimdt, R.D. Dick, J.W. Forbes, and D.G., Tasker), Elsevier Science Publishers, Amsterdam, pp. 475–478 (1992).Google Scholar
  15. [15]
    D.G. Howitt and P.V. Kelsey, in Proceedings of the International Conference on Impact Loading and Dynamic Behavior of Materials (ed. C.Y. Chiem, H.D. Kunze, and L.W. Meyer), DGM Informations-geselleschaft mbH, Oberursels, Germany, pp. 249–256 (1988).Google Scholar
  16. [16]
    D.M. Vanderwalker and W.J. Croft, J. Mater. Res. 3, pp. 761–763 (1988).ADSCrossRefGoogle Scholar
  17. [17]
    A. Cosculluela, Ph.D. dissertation, University of Bordeaux (1992).Google Scholar
  18. [18]
    Y. Wang and D.E. Mikkola, in Shock Wave and High Strain Rate Phenomena in Materials (ed. M.A. Meyers, L.E. Murr, and K.P. Staudhammer), Marcel Dekker, Inc., New York, pp. 1031–1040 (1992).Google Scholar
  19. [19]
    D. Yaziv, Ph.D dissertation, University of Dayton (1985).Google Scholar
  20. [20]
    L. Ewart and D.P. Dandekar, in High-Pressure Science and Technology—1993 (ed. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp.1201–1204 (1994).Google Scholar
  21. [21]
    H. Nahme, V. Hohler, and A. Stilp, in High-Pressure Science and Technology—1993 (ed. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 765–768 (1994).Google Scholar
  22. [22]
    J. Cagnoux, J. Phys. IV, Colloq. C8, 4, pp. 257–261 (1994).Google Scholar
  23. [23]
    J. Cagnoux, Unpublished data.Google Scholar
  24. [24]
    G.F. Raiser, J.L. Wise, R.J. Clifton, D.E. Grady, and D.E. Cox, J. Appl. Phys: 75, pp. 3862–3869 (1994).ADSCrossRefGoogle Scholar
  25. [25]
    J.A. Brusso, D.E. Mikkola, J.E. Flinn, and P.V. Kelsey, Scripta Metallurg. 22, pp. 47–52 (1988).CrossRefGoogle Scholar
  26. [26]
    F. Longy, Ph.D dissertation, University of Limoges (1987).Google Scholar
  27. [27]
    F. Longy and J. Cagnoux, J. Am. Phys. Soc. 72, pp. 971–979 (1989).Google Scholar
  28. [28]
    W.F. Brace and E.F. Bombolakis, J. Geophys. Res. 68, pp. 3709–3713 (1963).ADSCrossRefGoogle Scholar
  29. [29]
    J. Cagnoux and A. Cosculluela, in Proceedings of Dynamic Failure of Materials (ed. H.P. Rossmanith and A.J. Rosakis), Elsevier Applied Science, Amsterdam, pp.73–84 (1991).Google Scholar
  30. [30]
    A.G. Evans and Y. Fu, in Fracture in Ceramic Materials (ed. A.G. Evans), Noyes Publications, USA (1984).Google Scholar
  31. [31]
    R.W. Rice, Mater. Sci. Res. 5, pp. 195–227 (1971).ADSGoogle Scholar
  32. [32]
    J. Lankford, J. Hard Mater. 2, pp. 55–57 (1991).Google Scholar
  33. [33]
    T. Mashimo, Y. Hanaoka, and K. Nagayama, J. Appl. Phys. 63, pp. 327–336 (1988).ADSCrossRefGoogle Scholar
  34. [34]
    D. Yaziv, Y. Yeshurun, Y. Partom, and Z. Rosenberg, in Shock Waves in Condensed Matter—1987 (ed. S.C. Schmidt and N.C. Holmes), Elsevier Science Publishers, Amsterdam, pp. 297–300 (1988).Google Scholar
  35. [35]
    N.K. Bourne, Z. Rosenberg, J.E. Field, and I.G. Crouch, in Shock Compression of Condensed Matter—1991 (ed. S.C. Schimdt, R.D. Dick, J.W. Forbes, and D.G. Tasker), Elsevier Science Publishers, Amsterdam, pp. 269–273 (1992).Google Scholar
  36. [36]
    Z. Rosenberg, Y. Yeshurun, and D.E. Brandon, J. Phys. Colloq. C5, 46, pp. 331–341 (1985).Google Scholar
  37. [37]
    D.P. Dandekar and P. Bartokowski, in High-Pressure Science and Technology—1993 (ed. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 733–736 (1994).Google Scholar
  38. [38]
    H. Song, S.J. Bless, N.S. Brar, C.H. Simha, and S.D. Jang, in High-Pressure Science and Technology—1993 (ed. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 737–740 (1994).Google Scholar
  39. [39]
    J. Cagnoux and F. Longy, in Shock Waves in Condensed Matter—1987 (ed. S.C. Schimdt and N.C. Holmes), Elsevier Science Publishers, Amsterdam (1988), pp. 293–296.Google Scholar
  40. [40]
    J.M. Staehler, W.W. Predebon, and B.J. Pletka, in High-Pressure Science and Technology—1993 (ed. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 745–748 (1994).Google Scholar
  41. [41]
    M.E. Kipp and D.E. Grady, in Shock Compression of Condensed Matter—1989 (ed. S.C. Schmidt, J.N. Johnson, and L.W. Davison), Elsevier Science Publishers, Amsterdam, pp. 337–380 (1990).Google Scholar
  42. [42]
    D.E. Grady, in Shock Compression of Condensed Matter—1991 (ed. S.C. Schimdt, R.D. Dick, J.W. Forbes, and D.G. Tasker), Elsevier Science Publishers, Amsterdam, pp. 385–391 (1992).Google Scholar
  43. [43]
    D.P. Dandekar, in High-Pressure Science and Technology—1993 (ed. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 729–732 (1994).Google Scholar
  44. [44]
    D. Yaziv and N.S. Brar, J. Phys. Colloq. C3, 49, pp. 683–687 (1988).Google Scholar
  45. [45]
    N.S. Brar, Z. Rosenberg, and S.J. Bless, J. Appl. Phys. 69, pp. 7890–7891 (1991).ADSCrossRefGoogle Scholar
  46. [46]
    T. Mashimo, J. Appl. Phys. 63, pp. 4747–4750 (1988).ADSCrossRefGoogle Scholar
  47. [47]
    D.E. Grady and T. Mashimo, J. Appl. Phys. 71, pp. 4868–4874 (1992).ADSCrossRefGoogle Scholar
  48. [48]
    Z. Rosenberg, N.S. Brar, and S.J. Bless, J. Appl. Phys. 70, pp. 167–171 (1991).ADSCrossRefGoogle Scholar
  49. [49]
    M.E. Kipp and D.E. Grady, J. Phys. IV, Colloq. C8, 4, pp. 249–256 (1994).Google Scholar
  50. [50]
    T. Mashimo, in High-Pressure Science and Technology—1993 (ed. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 757–760 (1994).Google Scholar
  51. [51]
    D.J. Steinberg, J. Phys. IV, Colloq. C3, 1, pp. 837–844 (1991).Google Scholar
  52. [52]
    F.L. Adessio and J.N. Johnson, J. Appl. Phys. 67, pp. 3275–3286 (1990).ADSCrossRefGoogle Scholar
  53. [53]
    J.Y. Tranchet, J. Phys. IV, Colloq. C8, 4, pp. 298–294 (1994).Google Scholar
  54. [54]
    Z. Rosenberg, D. Yaziv, Y. Yeshurun, and S.J. Bless, in Proceedings of the International Conference on Impact Loading and Dynamic Behavior of Materials (ed. C.Y. Chiem, H.D. Kunze, and L.W. Meyer), DGM Informationsgeselleschaft mbH, Oberursels, Germany, pp. 393–398 (1988).Google Scholar
  55. [55]
    D.E. Grady, in Shock Compression of Condensed Matter—1991 (ed. S.C. Schimdt, R.D. Dick, J.W. Forbes, and D.G. Tasker), Elsevier Science Publishers, Amsterdam, pp. 455–458 (1992).Google Scholar
  56. [56]
    D.E. Grady, in Proceedings of the XIII International AIRAPT Conference, Bangalore, pp 641–650 (1991).Google Scholar
  57. [57]
    A. Nakamura and T. Mashimo, in High-Pressure Science and Technology—1993 (ed. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 303–305 (1994).Google Scholar
  58. [58]
    M.E. Kipp and D.E. Grady, in Shock Compression of Condensed Matter—1991 (ed. S.C. Schimdt, R.D. Dick, J.W. Forbes, and D.G. Tasker), Elsevier Science Publishers, Amsterdam, pp. 459–462 (1992).Google Scholar
  59. [59]
    W.D. Winkler and A.J. Stilp, in Shock Compression of Condensed Matter—1991 (ed. S.C. Schimdt, R.D. Dick, J.W. Forbes, and D.G. Tasker), Elsevier Science Publishers, Amsterdam, pp. 475–478 (1992).Google Scholar
  60. [60]
    D.B. Larson, Int. J. Rock Mech. Mining Sci. Geomech. Abstr. 19(4), pp. 157–166 (1982).CrossRefGoogle Scholar
  61. [61]
    J.C. Cizek and A.L. Florence, Laboratory Investigation of Containment of Underground Explosions, Technical report, SRI International, DNA-TR-84-11 (1983).Google Scholar
  62. [62]
    J. Cagnoux, Ph.D. dissertation, Universitié de Poitiers (1985).Google Scholar
  63. [63]
    J. Cagnoux, in Shock Compression of Condensed Matter—1989 (ed. S.C. Schmidt, J.N. Johnson, and L.W. Davison), Elsevier Science Publishers, Amsterdam, pp. 445–448 (1990).Google Scholar
  64. [64]
    R.W. Klopp, D.A. Shockey, L. Seaman, D.R. Curran, J.T. McGinn, and T. de Resseguier, Mechanical Testing of Ceramics and Ceramic Composites, American Society of Mechanical Engineers, New York, pp. 41–60 (1994).Google Scholar
  65. [65]
    J.T. McGinn, R.W. Klopp, and D.A. Shockey, in Proceedings of Materials Research Society, Symposium, Boston (1994).Google Scholar
  66. [66]
    F. Collombet and J.Y. Tranchet, J. Phys. IV, Colloq. C8, 4, pp. 641–646 (1994).Google Scholar
  67. [67]
    J.Y. Tranchet, Ph.D dissertation (1994).Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1998

Authors and Affiliations

  • J. Cagnoux
  • J.-Y. Tranchet

There are no affiliations available

Personalised recommendations