Advertisement

Studies of the Glomerular Filtration Barrier: Integration of Physiologic and Cell Biologic Experimental Approaches

  • Melvin Silverman

Abstract

The human kidney receives approximately 25% of the cardiac output and on a daily basis filters 2001 of plasma at the glomerulus. To maintain volume homeostasis and hemodynamic stability in the face of such large potential outflow “losses” requires that there be rigorous control of the balance between the glomerular filtration rate (i.e., rate of urine formation) and the rate of tubular fluid reabsorption along the nephron. Under normal circumstances, this control is achieved through a combination of hormonal (i.e., renin-angiotensin-aldosterone) and glomerulotubular feedback (macula densa—afferent arteriole resistance) mechanisms. At the level of the glomerular filtration barrier, the classic view of the physiology of urine formation is that it is an entirely passive process (5.1), described by:
$${\rm{GFR = }}k_f S(\Delta P - \Delta \pi ),$$
(5.1)
where GFR is the glomerular filtration rate, k f is the hydraulic conductivity coefficient of the glomerular filtration barrier, S is the surface area available for filtration, ΔP is the hydrostatic pressure gradient across the glomerular filtration barrier, and Δπ is the oncotic pressure gradient across the glomerular filtration barrier.

Keywords

Glomerular Filtration Mesangial Cell Glomerular Basement Membrane Slit Diaphragm Glomerular Filtration Barrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maddox, D.A., W.M. Deen, and B.M. Brenner. Glomerular filtration. In: Handbook of Physiology, Section 8, Renal Physiology, Volume 1, edited by E. Windhager. New York: Oxford University Press, pp. 545–638, 1992.Google Scholar
  2. 2.
    Lea, P.J., M. Silverman, R. Hegele, and M.J. Hollenberg. Tridimensional ultrastructure of glomerular capillary endothelium revealed by high-resolution scanning electron microscopy. Microvasc. Res. 38:296–308, 1989.PubMedCrossRefGoogle Scholar
  3. 3.
    Vasmant, D., M. Maurice, and G. Feldman. Cytoskeleton ultrastructure of podocytes and glomerular endothelial cells in man and in the rat. Anal. Rec. 210:17–24, 1984.CrossRefGoogle Scholar
  4. 4.
    Raij, L. and C. Baylis. Glomerular actions of nitric oxide. Kidney Int. 48:20–32, 1995.PubMedCrossRefGoogle Scholar
  5. 5.
    Tisher, C.C. and Madsen, K.M. Anatomy of the kidney. In: The Kidney, edited by B.M. Brenner and F.C. Rector. Philadelphia: W.B. Saunders Co., pp. 3–131, 1991.Google Scholar
  6. 6.
    Schnabel, E., J.M. Anderson, and M.G. Farquhar. The tight junction protein ZO-1 is concentrated along slit diaphragms of the glomerular epithelium. J. Cell Biol. 111: 1255–1263, 1990.PubMedCrossRefGoogle Scholar
  7. 7.
    Latta, H. An approach to the structure and function of the glomerular mesangium. J. Am. Soc. Nephrol. 2:S65–S73, 1992.PubMedGoogle Scholar
  8. 8.
    Kreisberg, J.I., M. Venkatachalam, and D. Troyer. Contractile properties of cultured glomerular mesangial cells. Am. J. Physiol. 249:F457–F463, 1985.PubMedGoogle Scholar
  9. 9.
    Whiteside, C. and M. Silverman. Determination of glomerular permselectivity to neutral dextrans in the dog. Am. J. Physiol. 245:F485–F495, 1983.PubMedGoogle Scholar
  10. 10.
    Lumsden, C.J. and M. Silverman. Multiple indicator dilution and the kidney: Kindetics, permeation, and transport in vivo. Meth. Enzymol. 191:34–72, 1990.PubMedCrossRefGoogle Scholar
  11. 11.
    Whiteside, C. and M. Silverman. Glomerular and postglomerular permselectivity to anionic dextrans in the dog. Am. J. Physiol. 247:F965–F974, 1984.PubMedGoogle Scholar
  12. 12.
    Whiteside, C.I. and C.J. Lumsden. Transglomerular cationic macromolecular flux is mediated by a convection-binding mechanism. Am. J. Physiol. 256:F882–F893, 1989.PubMedGoogle Scholar
  13. 13.
    Farquhar, M.G. The glomerular basement membrane. A selective macromolecular filter. In: Cell Biology of Extracellular Matrix, edited by E.D. Hay. New York: Plenum Press, pp. 365–418, 1991.CrossRefGoogle Scholar
  14. 14.
    Ghitescu, L., M. Desjardins, and M. Bendayan. Immunocytochemical study of glomerular permeability to anionic, neutral and cationic albumins. Kidney Int. 42:25–32, 1992.PubMedCrossRefGoogle Scholar
  15. 15.
    Daniels, B., E. Hauser, W. Deen, and T. Hostetter. Glomerular basement membrane: In vitro studies of water and protein permeability. Am. J. Physiol. 262:F919–F926, 1992.PubMedGoogle Scholar
  16. 16.
    Whiteside, K., R. Prutis, R. Cameron, and J. Thompson. Glomerular epithelial detachment, not reduced charge density, correlates with proteinuria in adriamycin and puromycin nephrosis. Lab. Invest. 61:650–660, 1989.PubMedGoogle Scholar
  17. 17.
    Whiteside, C.I., R. Cameron, S. Munk, and J. Levy. Podocyte cytoskeletal disaggregation and basement-membrane detachment in puromycin aminonucleoside nephrosis. Am. J. Pathol. 142:1641–1653, 1993.PubMedGoogle Scholar
  18. 18.
    Inkyo-Hayasaka, K., T. Sakai, N. Kobayashi, I. Shirato, and Y. Tomino. Three-dimensional analysis of the whole mesangium in the rat. Kidney Int. 50:673–683, 1996.CrossRefGoogle Scholar
  19. 19.
    Emerman, J.T. and D.R. Pitelka. Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen membranes. In Vitro Cell. Dev. Biol. 13:316–328, 1977.CrossRefGoogle Scholar
  20. 20.
    Hall, H.G., D.A. Farson, and M.J. Bissell. Lumen formation by epithelial cell lines in response to collagen overlay: A morphogenetic model in culture. Proc. Natl. Acad. Sci. USA. 79:4672–4676, 1982.PubMedCrossRefGoogle Scholar
  21. 21.
    Kitamura, M., N. Maruyama, T. Mitarai, R. Nagasawa, H. Yoshida, and O. Sakai. Extracellular matrix contraction by cultured mesangial cells: Modulation by transforming growth factor b and matrix components. Exp. Mol. Pathol. 56:132–142, 1992.PubMedCrossRefGoogle Scholar
  22. 22.
    Kitamura, M., T. Mitarai, N. Maruyama, R. Nagasawa, H. Yoshida, and T. Sakai. Mesangial cell behaviour in a three-dimensional extracellular matrix. Kidney Int. 40:653–661, 1991.PubMedCrossRefGoogle Scholar
  23. 23.
    Lin, C.Y. and F. Grinnell. Decreased level of PDGF-stimulated receptor autophos-phorylation by fibroblasts in mechanically relaxed collagen matrices. J. Cell Biol. 122:663–672, 1993.PubMedCrossRefGoogle Scholar
  24. 24.
    Marx, M., T.O. Daniel, M. Kashgarian, and J.A. Madri.Spatial organization of the extracellular matrix modulates the expression of PDGF-receptor subunits in mesangial cells. Kidney Int. 43:1027–1041, 1993.PubMedCrossRefGoogle Scholar
  25. 25.
    Marx, M., R.A. Perlmutter, and J.A. Madri. Modulation of platelet-derived growth factor receptor expression in microvascular endothelial cells during in vitro angiogenesis. J. Clin. Invest. 93:131–139, 1994.PubMedCrossRefGoogle Scholar
  26. 26.
    Montesano, R. and L. Orci. Transforming growth factor b stimulates collagen-matrix contraction by fibroblasts: Implications for wound healing. Proc. Nat. Acad. Sci. USA 85:4894–4897, 1988.PubMedCrossRefGoogle Scholar
  27. 27.
    Stopak, D. and A.K. Harris. Connective tissue morphogenesis by fibroblast traction. Develop. Biol 90:383–398, 1982.PubMedCrossRefGoogle Scholar
  28. 28.
    Zent, R., M. Ailenberg, T.K. Wadell, G.P. Downey, and M. Silverman. Puromycin aminonucleoside inhibits mesangial cell-induced gel contraction of collagen gels by stimulating production of reactive oxygen species. Kidney Int. 47:811–817, 1995.PubMedCrossRefGoogle Scholar
  29. 29.
    Grinnell, F. and C.R. Lamke. Reorganization of hydrated collagen gels by human skin fibroblasts. J. Cell. Sci. 66:51–63, 1984.PubMedGoogle Scholar
  30. 30.
    Burridge, K., C.E. Turner, and L.H. Romer. Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: A role in cytoskeletal assembly. J. Cell Biol. 119:893–903, 1992.PubMedCrossRefGoogle Scholar
  31. 31.
    Romer, L.H., N. McLean, C.E. Turner, and K. Burridge. Tyrosine kinase activity, cytoskeletal organization, and motility in human vascular endothelial cells. Mol. Biol. Cell 5:349–361, 1995.Google Scholar
  32. 32.
    Ehrlich, H.R and D.J. Wyler. Fibroblast contraction of collagen lattices in vitro: Inhibition by chronic inflammatory cell mediators. J. Cell. Phys. 116:345–351, 1983.CrossRefGoogle Scholar
  33. 33.
    Mochiate, K., P. Pawelek, and F. Grinnell. Stress relaxation of contracted collagen gels: Disruption of actin filament bundles, release of cell surface fibronectin, and downregulation of DNA and protein synthesis. Exp. Cell Res. 193:198–207, 1991.CrossRefGoogle Scholar
  34. 34.
    Schmidt, C.E., A.F. Horwitz, D.A. Lauffenburger, and M.P. Sheetz. Integrincytoskeletal interactions in migrating fibroblasts are dynamic, assymetric and regulated. J. Cell Biol. 123:977–991, 1993.PubMedCrossRefGoogle Scholar
  35. 35.
    Zent, R. Signaling in mesangial cells grown in three-dimensional culture. Ph.D. Thesis, University of Toronto, 1997.Google Scholar
  36. 36.
    Abboud, H. Role of platelet-derived growth factor in renal injury. Ann. Rev. Physiol. 57:297–309, 1995.CrossRefGoogle Scholar
  37. 37.
    Shah, S.V. 1995. The role of oxygen metabolites in glomerular disease. Ann. Rev. Physiol. 57:245–262.CrossRefGoogle Scholar
  38. 38.
    Ueda, N., B. Guidet, and S.V. Shah. Measurement of intracellular generation of hydrogen peroxide by rat glomeruli in vitro. Kidney Int. 45:788–793, 1994.PubMedCrossRefGoogle Scholar
  39. 39.
    Shah, S.V. Role of reactive oxygen metabolites in experimental glomerular disease. Kidney Int. 35:1093–1106, 1989.PubMedCrossRefGoogle Scholar
  40. 40.
    Diamond, J.R., J.F. Bonventre, and M.J. Karnovsky. A role for free oxygen radicals in aminonucleoside nephrosis. Kidney Int. 29:478–483, 1986.PubMedCrossRefGoogle Scholar
  41. 41.
    Radeke, H.H., A.R. Cross, J.T. Hancock, O.T.G. Jones, M. Nakamura, V. Kaever, and K. Resch. Functional expression of NAPDH oxidase components (alpha-and betasubunits of cytochrome b558 and 45-kDa flavoprotein) by intrinsic human glomerular mesangial cell. J. Biol. Chem. 266:21025–21029, 1991.PubMedGoogle Scholar
  42. 42.
    Radeke, H.H., B. Meier, N. Topley, J. Floge, G.G. Habermehl, and K. Resch. Interleukin 1-a and tumor necrosis factor-a induce oxygen radical production in mesangial cells. Kidney Int. 37:767–775, 1990.PubMedCrossRefGoogle Scholar
  43. 43.
    Huang, R., J. Wu, and E.D. Adamson. UV activates growth receptors via reactive oxygen intermediates. J. Cell Biol. 133:211–220, 1996.PubMedCrossRefGoogle Scholar
  44. 44.
    Baas, A.S. and B.C. Berk. Differential activation of mitogen-activated protein kinases by H2O2 and O2-in vascular smooth muscle cells. Circ. Res. 77:29–36, 1995.PubMedGoogle Scholar
  45. 45.
    Fialkow, L., C.K. Chan, S. Grinstein, and G.P. Downey. Regulation of tyrosine phosphorylation in neutrophils by the NADPH oxidase. Role of reactive oxygen intermediates. J. Biol. Chem. 268:17131–17137, 1994.Google Scholar
  46. 46.
    Brumell, J.H., A.L. Burkhardt, J.B. Bolen, and S. Grinstein. Endogenous reactive intermediates activate tyrosine kinases in human neutrophils. J. Biol. Chem. 271:1455–1461, 1995.Google Scholar
  47. 47.
    Sundaresan, M., Z. Yu, V.J. Ferrans, K. Irani, and T. Finkel. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270:296–299, 1995.PubMedCrossRefGoogle Scholar
  48. 48.
    Gonzales-Rubio, M., S. Voit, D. Rodriguez-Puyol, M. Weber, and M. Marx. Oxidative stress induces tyrosine phosphorylation of PDGF a-and b-receptors and pp60c-src in mesangial cells. Kidney Int. 50:164–173, 1996.CrossRefGoogle Scholar
  49. 49.
    Chrzanowska-Wodnicka, M. and K. Burridge. Tyrosine phosphorylation is involved in reorganisation of the actin cytoskeleton in response to serum or LPA stimulation. J. Cell Sci. 107:3643–3654, 1994.PubMedGoogle Scholar
  50. 50.
    Hecht, D. and Y. Zick. Selective inhibition of protein tyrosine phosphatase activities by H2O2 and vanadate in vitro. Biochem. Biophys. Res. Comm. 188:773–779, 1992.PubMedCrossRefGoogle Scholar
  51. 51.
    Zent, R., M. Ailenberg, T.K. Waddell, G.P. Downey, and M. Silverman. Puromycin aminonucleoside inhibits mesangial cell-induced contraction of collagen gels by stimulating production of reactive oxygen species. Kidney Int. 47:811–817, 1995.PubMedCrossRefGoogle Scholar
  52. 52.
    Ricardo, S.D., J.F. Bertram, G.B. Ryan. Reactive oxygen species in aminonucleoside nephrosis: In vitro studies. Kidney Int. 45:1057–1069, 1994.PubMedCrossRefGoogle Scholar
  53. 53.
    Kawaguchi, M., M. Yamada, H. Wada, and T. Okiaki. Roles of active oxygen species in glomerular epithelial cell injury in vitro caused by puromycin aminonucleoside. Toxicology 72:329–340, 1992.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1998

Authors and Affiliations

  • Melvin Silverman

There are no affiliations available

Personalised recommendations