Interactions Between Bovine Adrenal Medulla Endothelial and Chromaffin Cells

  • Fernando F. Vargas
  • Soledad Calvo
  • Raul Vinet
  • Eduardo Rojas


Many substances normally present in blood and those released during inflammation or tissue damage can, if they reach threshold concentration, stimulate endothelial cells (ECs) to increase synthesis and secretion of nitric oxide (1) and prostacyclin (2). These products induce smooth muscle cell relaxation and consequently vasodilatation (3). Another EC response evoked by these substances consists on increased transvascular permeability to small solutes and water across intercellular junctions (4, 5).


Endothelial Cell Vascular Endothelial Cell Chromaffin Cell Adrenal Medulla Bovine Aortic Endothelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blatter, L. A., Z, Taha, S. Mesaros, P. S. Shacklock, W. G. Wier, and T. Malinsky. Simultaneous measurement of Ca2+ and nitric oxide in bradykinin-stimulated vascular endothelial cells. Circ. Res. 76:922–924, 1995.PubMedGoogle Scholar
  2. 2.
    Watanabe, K., G. Lam, and E. A. Jaffe. The correlation between rises in intracellular calcium and PGI2 production in cultured vascular endothelial cells. Prostaglandins, Leukotrienes and Essential Fatty Acids 46:211–214, 1992.CrossRefGoogle Scholar
  3. 3.
    Jaffe, E. A. Physiological functions of normal endothelial cells. In: Vascular Medicine, edited by J. Loscalzo, M. A. Creager, and V. J. Dzau. Boston: Little Brown and Company, pp. 1–19, 1992.Google Scholar
  4. 4.
    He, P., X. Zhang, and F. E. Curry. Ca2+ entry through conductive pathway modulated receptor-mediated increase in microvessel permeability. Am. J. Physiol. 271:H2377–H2387, 1996.PubMedGoogle Scholar
  5. 5.
    Curry, F. E. Modulation of venular microvessel permeability by calcium influx into endothelial cells. FASEB J. 6:2456–2466, 1992.PubMedGoogle Scholar
  6. 6.
    Himmel, H. M., ARA. Whorton, and H. C. Strauss. Intracellular calcium, currents and stimulus-response coupling in endothelial cells. Hypertension 21:112–127, 1993.PubMedGoogle Scholar
  7. 7.
    Johns, A., T. V. Lategan, N. C. Lodge, U. S. Ryan, C. Van Bremen, and J. Adams. Calcium entry through receptor-operated channels in bovine pulmonary artery endothelial cells. Tissue and Cell 19(6):733–745, 1987.PubMedCrossRefGoogle Scholar
  8. 8.
    Colden-Stanfield, M., W. P. Schilling, A. K. Ritchie, S. G. Eskin, L. T. Navarro, and D. L. Kunze. Bradykinin-induced increases in cytosolic calcium and ionic currents in cultured bovine aortic endothelial cells. Circ. Res. 61:632–640, 1987.PubMedGoogle Scholar
  9. 9.
    Morgan-Boyd, R., J. M. Stewart, R. J. Vavrek, and A. Hassid. Effects of bradykinin and angiotensin II on intracellular Ca2+ dynamics in endothelial cells. Am. J. Physiol. 253:C588–C598, 1987.PubMedGoogle Scholar
  10. 10.
    Ryan, U. S., P. V. Avdonin, E. Y. Posin, E. G. Popov, S. M. Danilov, and V. A. Tkachuk. Influence of vasoactive agents on cytoplasmic free calcium in vascular endothelial cells. J. Appl. Physiol. 65:2221–2227, 1988.PubMedGoogle Scholar
  11. 11.
    Adams, A. D., R. Lackey, and C. Van Bremen. Ion channels and regulation of intracellular calcium in vascular endothelial cells. FASEB J. 3:2390–2400, 1989.Google Scholar
  12. 12.
    Vargas, F. F., S. Calvo, R. Vinet, E. Garde, and E. Rojas. Cytosolic calcium rise evoked by voltage-gated calcium channels activation in adrenal medulla endothelial cells. Biol. Res. (in press).Google Scholar
  13. 13.
    Bean, B. P. Classes of calcium channels in vertebrate cells. Ann. Rev. Physiol. 51:367–384, 1989.CrossRefGoogle Scholar
  14. 14.
    Hess, P. Calcium channels in vertebrate cells. Annu. Rev. Neurosci. 13:337–356, 1990.PubMedCrossRefGoogle Scholar
  15. 15.
    Tsien, R. W., D. Lipscombe, D. V. Madison, K. R. Bley, A. P. Fox. Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci. 11:431–438, 1988.PubMedCrossRefGoogle Scholar
  16. 16.
    Estacion, M. and L. J. Mordan. Expression of voltage-gated calcium channels correlates with PDGF-stimulated calcium influx and depends upon cell density in C3H 10T1/2 mouse fibroblasts. Cell Calcium 14:161–171, 1993.PubMedCrossRefGoogle Scholar
  17. 17.
    Misler, S., D. W. Barnett, D. M. Pressel, K. D. Gillis, D. W. Scharp, and L. C. Falke. Stimulus-secretion coupling in β-cells of transplantable human islets of Langerhans. Diabetes 41:662–670, 1992.PubMedCrossRefGoogle Scholar
  18. 18.
    Rojas, E., P. Carroll, C. Ricordi, A. Boschero, S. Stojilkovic, and I. Atwater. Control of cytosolic free calcium in cultured human pancreatic β-cells occurs by external calcium-dependent and independent mechanisms. Endocrinology 134:771–1781, 1994.CrossRefGoogle Scholar
  19. 19.
    Stutzin, A., K. Stojilkovic, J. Catt, and E. G. Rojas. Characteristics of two types of calcium channels in rat pituitary gonadotrophs. Am. J. Physiol. 257:C865–C874, 1989.PubMedGoogle Scholar
  20. 20.
    Ceña, V., K. W. Brocklehurst, H. B. Pollard, and E. Rojas. Pertussis toxin stimulation of catecholamine release from adrenal medullary chromaffin cells: Mechanism may be direct activation of L-type and G-type calcium channels. J. Membr. Biol. 122:23–31, 1991.PubMedCrossRefGoogle Scholar
  21. 21.
    Colden-Stanfield, M., W. P. Schilling, L. D. Possani, and D. L. Kunze. Bradykinin-induced potassium current in cultured bovine aortic endothelial cells. J. Membr. Biol. 116:227–230, 1990.PubMedCrossRefGoogle Scholar
  22. 22.
    Sturek, M., P. Smith, and L. Stehno-Bittel. In vitro models of vascular endothelial cell calcium regulation. In: Ion Channels of Vascular Smooth Muscle Cells and Endothelial Cells, edited by N. Sperelakis and H. Kuriyama. New York-Amsterdam-London-Tokyo: Elsevier, pp. 349–365, 1993.Google Scholar
  23. 23.
    Takeda, K., V. Schini, and H. Stoeckel. Voltage activated potassium, but not calcium currents in cultured bovine aortic endothelial cells. Pflug. Arch. 410:385–393, 1987.CrossRefGoogle Scholar
  24. 24.
    Vargas, F. F., P. Caviedes, and D. O. Grant. Electrophysiological characteristics of cultured human umbilical vein endothelial cells. Microvasc. Res. 47:153–165, 1994.PubMedCrossRefGoogle Scholar
  25. 25.
    Bossu, J., L. A. Feltz, J. L. Rodeau, and F. Tanzi. Voltage dependent calcium transient currents in freshly dissociated capillary endothelial cells. FEBS Lett. 255:377–380, 1989.PubMedCrossRefGoogle Scholar
  26. 26.
    Bossu, J., A. Elhamdani, and L. A. Feltz. Voltage-dependent calcium entry in confluent bovine capillary endothelial cells. FEBS Lett. 299:239–242, 1992.PubMedCrossRefGoogle Scholar
  27. 27.
    Vinet, R. and F. F. Vargas. L-and T-type voltage-gated calcium channels in adrenal medulla microvascular endothelial cells. Submitted to Am. J. Physiol. 1997.Google Scholar
  28. 28.
    Vargas, F. F., R. Vinet, and S. Calvo. Voltage-gated Ca2+ channels in adrenal medulla endothelial cells and their loss during cell culture. FASEB. J. 8:A1061, 1994.Google Scholar
  29. 29.
    Delpiano, M. A. and B. M. Altura. Modulatory effect of extracellular Mg2+ ions on K+ and Ca2+ currents on capillary endothelial cells from rat brain. FEBS Lett. 394:335–339, 1996.PubMedCrossRefGoogle Scholar
  30. 30.
    Delpiano, M. A. Ionic currents on endothelial cells of rat brain capillaries. In: Arterial Chemoreceptors: Cell to system, edited by R. G. O’Regan, P. Nolan, D. S. McQueen, and D. J. Paterson. New York: Plenum Press, pp. 183–186, 1994.Google Scholar
  31. 31.
    Vargas, F. F., M. E. O’Donnell, and F. E. Curry. Electrophysiology of Brain Microvascular Endothelial Cells. Microcirculation 4(1): 159, 1997.Google Scholar
  32. 32.
    Forsberg, E. J., G. Feuerstein, E. Shohami, and H. B. Pollard. Adenosine triphosphate stimulates inositol phospholipid metabolism and prostacyclin formation in adrenal medullary endothelial cells by means of P2-purinergic receptors. Proc. Natl. Acad. Sci. USA 84:5630–5634, 1987.PubMedCrossRefGoogle Scholar
  33. 33.
    Gosink, E. C. and E. J. Forsberg. Effect of ATP and bradykinin on endothelial cell Ca2+ homeostasis and formation of cGMP and prostacyclin. Am. J. Physiol. 265:C1620–C1629, 1993.PubMedGoogle Scholar
  34. 34.
    Bossu, J. L., A. Elhamdani, A. Feltz, F. Tanzi, D. Aunis, and D. Thierse. Voltage-gated Ca entry in isolated bovine capillary endothelial cells: evidence of a new type of BAY K 8644-sensitive channel. Pflugers Arch. 420:200–207, 1992.PubMedCrossRefGoogle Scholar
  35. 35.
    Laskey, R. E., D. J. Adams, A. Johns, G. M. Rubanyi, and C. van Breemen. Membrane potential and Na+-K+ pump activity modulate resting and bradykinin-stimulated changes in cytosolic free calcium in cultured endothelial cells from bovine atria. J. Biol. Chem. 265(5):2613–2619, 1990.PubMedGoogle Scholar
  36. 36.
    Luckhoff, A., and R. Busse. Alcium influx into endothelial cells and formation of endothelium-derived relaxing facror is controlled by the membrane potential. Pflugers Arch 416:305–311, 1990.PubMedCrossRefGoogle Scholar
  37. 37.
    Furuya, S., C. Edwards, and R. Ornberg. Morphological behavior of cultured bovine adrenal medulla capillary endothelial cells. Tissue & Cell 22:615–628, 1990.CrossRefGoogle Scholar
  38. 38.
    Voyta, J. C., D. P. Via, C. E. Butterfield, and B. R. Zetter. Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. J. Cell Biol. 99:2034–2040, 1984.PubMedCrossRefGoogle Scholar
  39. 39.
    Banerjee, D. K., R. L. Ornberg, M. B. H. Youdim, and H. B. Pollard. Endothelial cells from bovine adrenal medulla develop capillary-like growth patterns in culture. Proc. Natl. Acad. Sci. USA. 82:4702–4706, 1985.PubMedCrossRefGoogle Scholar
  40. 40.
    Hamill, O. P., A. Marty, B. Neher, B. Sakman, and F. Sigworth. Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pfluegers Arch. 391:85–100, 1981.CrossRefGoogle Scholar
  41. 41.
    Olesen, S. P., D. E. Clapham, and P. P. Davies. Haemodynamic shear stress activates a K current in vascular endothelial cells. Nature 331:168–170, 1988.PubMedCrossRefGoogle Scholar
  42. 42.
    Mehrke, G., U. Pohl, and J. Daut. Effects of vasoactive agonists on the membrane potential of cultured bovine aortic and guinea-pig coronary endothelium. J. Physiol. (London) 439:277–299, 1991.Google Scholar
  43. 43.
    Lansman, J. B., T. J. Hallam, and T. J. Rink. Single stretch-activated ion channels in vascular endothelial cells as mechano-transducers? Nature, Lond. 325:811–813, 1987.CrossRefGoogle Scholar
  44. 44.
    Takeda, K. and M. Keppler. Voltage-dependent and agonist-activated ionic currents in vascular endothelial cells. A Review. Blood Vessels 27:169–183, 1990.PubMedGoogle Scholar
  45. 45.
    Lori, P., G. Varadi, and A. Schwartz. Molecular insights into regulation of L-type Ca channel function. NIPS 6:277–281, 1991.Google Scholar
  46. 46.
    Bertolino, M. and R. R. Llinás. The central role of voltage-activated and receptor-operated calcium channels in neuronal cells. Annu. Rev. Pharmacol. Toxicol. 32:399–421, 1992.PubMedCrossRefGoogle Scholar
  47. 47.
    Stojilkovic, S., A. Torsello, I. Toshihiko, E. Rojas, and K. J. Catt. Calcium signaling and secretory responses in agonist-stimulated pituitary gonadotrophs. J. Steroid Biochem. Molec. Biol. 41(3–8):453–457, 1992.PubMedCrossRefGoogle Scholar
  48. 48.
    Spedding, M. and R. Paoletti. Classification of calcium channels and the sites of action of drugs modifying channel function. Pharmacol. Rev. 44:363–376, 1992.PubMedGoogle Scholar
  49. 49.
    Hess, P., B. Lansman, and R. W. Tsien. Different modes of Ca channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists. Nature 311:538–544, 1984.PubMedCrossRefGoogle Scholar
  50. 50.
    Tang, C. M., F. Presser, and M. Morad. Amiloride selectively blocks the low threshold (T) calcium channel. Science 240:213–215, 1988.PubMedCrossRefGoogle Scholar
  51. 51.
    Colden-Stanfield, M., E. B. Cramer, and E. K. Gallin. Comparison of apical and basal surfaces of confluent endothelial cells: Patch-clamp and viral studies. J. Physiol. 263:C573–C583, 1992.Google Scholar
  52. 52.
    Stojilkovic, S., M. Kukuljan, M. Tomic, E. Rojas, and J. Catt. Mechanism of agonistinduced [Ca2+]i oscillations in pituitary gonadotrophs. J. Biol. Chem. 268:7713–7720, 1993.PubMedGoogle Scholar
  53. 53.
    Laskey, R. L., D. J. Adams, M. Cannell, and C. van Breemen. Calcium-entry dependent oscillations of cytoplasmic calcium concentration in cultured endothelial cell monolayers. Proc. Natl. Acad. Sci. 89:1690–1694, 1992.PubMedCrossRefGoogle Scholar
  54. 54.
    Neylon, C. B. and R. F. Irvine. Synchronized repetitive spikes in cytoplasmic calcium in confluent monolayers of human umbilical vein endothelial cells. FEBS Lett. 275:173–176, 1990.PubMedCrossRefGoogle Scholar
  55. 55.
    Tracey, W. R. and M. J. Peach. Differential muscarinic receptor mRNA expression by freshly isolated and cultured bovine aortic endothelial cells. Circ. Res. 70:234–240, 1992.PubMedGoogle Scholar
  56. 56.
    Stolz, D. B. and B. S. Jacobson. Macro-and microvascular endothelial cells in vitro: Maintenance of biochemical heterogeneity despite loss of ultrastructural characteristics. In Vitro Cell. Dev. Biol. 27A:168–182, 1991.Google Scholar
  57. 57.
    Oike, M., G. Droogmans, and B. Nilius. Mechanosensitive Ca2+ transients in endothelial cells from human umbilical vein. Proc. Natl. Acad. Sci. USA. 91:2940–2944, 1944.CrossRefGoogle Scholar
  58. 58.
    Ganong, W. F. Review of Medical Physiology. San Francisco, California: Lange Medical Publications, 1985, 295 pp.Google Scholar
  59. 59.
    Mizrachi, Y., P. I. Lelkes, R. L. Ornberg, G. Goping, and H. B. Pollard. Specific adhesion between pheochromocytoma (PC12) cells and adrenal medullary endothelial cells in co-culture. Cell Tissue Res. 256:365–372, 1989.PubMedCrossRefGoogle Scholar
  60. 60.
    Lelkes, P. I. and B. R. Unsworth. Role of heterotypic interactions between endothelial cells and parenchymal cells in organ specific differentiation: A possible trigger for vasculogenesis. In: Angiogenesis in Health and Disease, edited by M. E. Mara-goudakis, P. Gullino, and P. I. Lelkes. New York: Plenum Press, pp. 27–43, 1992.CrossRefGoogle Scholar
  61. 61.
    Ornberg, R. L., G. A. J. Kuijpers, and R. D. Leapman.Electron probe microanalysis of the subcellular compartments of bovine adrenal chromaffin cells. J. Biol. Chem. 263(3): 1488–1493, 1988.PubMedGoogle Scholar
  62. 62.
    Lelkes, P. I., V. G. Manolopoulos, D. Chick, and B. R. Unsworth. Endothelial cell heterogeneity and organ-specificity. In: Angiogenesis, Molecular Biology, Clinical Aspects, edited by M. E. Maragoudaku, P. Gullino, and P. I. Lelkes. New York: Plenum Press, pp. 1–15, 1994.Google Scholar
  63. 63.
    Cohen, R. A., J. T. Shepherd, and P. M. Vanhoutte. Inhibitory role of the endothelium in the response of isolated coronary arteries to platelets. Science 221:237–238, 1983.CrossRefGoogle Scholar
  64. 64.
    Ralevic, V. and G. Burnstock. Role of P2-purinoceptors in the cardiovascular system. Circulation 84(1): 1–14, 1991.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1998

Authors and Affiliations

  • Fernando F. Vargas
  • Soledad Calvo
  • Raul Vinet
  • Eduardo Rojas

There are no affiliations available

Personalised recommendations