Pulmonary Perfusion and the Exchange of Water and Acid in the Lungs

  • Richard M. Effros
  • Julie Biller
  • Elizabeth Jacobs
  • Gary S. Krenz


Studies of transport across the membranes that separate the pulmonary vasculature from the alveoli have been associated with theoretical and practical problems which have challenged the ingenuity of investigators for decades. It is difficult to distinguish between alveolar and airway transport in the intact lung, or to define the relative roles of different cells that line the alveoli. Monolayers of type II pneumocytes have been used to characterize solute transport in the distal lungs, but uncertainties persist regarding the identity and properties of these cells (Mason et al., 1982; Crandall et al., 1982). The morphology of isolated alveolar cells changes in culture from that of type II pneumocytes to flatter cells, which appear to be similar to type I pneumocytes. Since the former cover less than 5% of the surface of the lungs, they may not be representative of the normal barrier that separates the gaseous phase from the blood flowing through the lungs. Whether the cells that have been in culture for longer intervals have transport properties similar to those of the type I pneumocytes will remain uncertain unless the function of these cells can be compared with that of cells in the intact lung.


Cystic Fibrosis Cystic Fibrosis Transmembrane Conductance Regulator Water Transport Water Channel Evans Blue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agre, P., G.M. Preston, B.L. Smith, J.S. Jung, S. Raina, C. Monon, W.B. Guggino, and S. Nielsen. Aquaporin CHIP: The archetypal molecular water channel. Am. J. Physiol. 265:F463–F476, 1993.PubMedGoogle Scholar
  2. Bedrossian, C.W., S.D. Greenberg, D.B. Singer, and J.J. Hansen. The lung in cystic fibrosis. A quantitative study including prevalence of pathologic findings among different age groups. Human Pathology 7:195–204, 1976.PubMedCrossRefGoogle Scholar
  3. Bendig, D.W., D.K. Jeilheimer, M.L. Wagner, G.D. Ferry, and G.M. Harrisson. Complications of gastroesophageal reflux in patients with cystic fibrosis. J. Pediatr. 100:536–540, 1982.PubMedCrossRefGoogle Scholar
  4. Berg, M.M., K.J. Kim, R.L. Lubman, and E.D. Crandall. Hydrophilic solute transport across rat alveolar epithelium. J. Appl. Physiol. 66:2320–2327, 1989.PubMedCrossRefGoogle Scholar
  5. Bingham, J.B., K.A. McKusick, H.W. Strauss, C.A. Boucher, and G.M. Pohost. Influence of coronary artery disease on pulmonary uptake of thallium-201. Am. J. Cardiol. 46:821–826, 1980.PubMedCrossRefGoogle Scholar
  6. Breakey, A.S., C.T. Dotter, and I. Steinberg. Pulmonary complications of cardiospasm. N. Eng. J. Med. 245:441–447, 1951.CrossRefGoogle Scholar
  7. Brown, C.M., C.F. Snowdon, B. Slee, L.N. Sandle, and W.D.W. Rees. Measurement of bicarbonate output from the intact human oesophagus. Gut 34:872–880, 1993.PubMedCrossRefGoogle Scholar
  8. Carter, E.P., M.A. Matthay, J. Farinas, and A.S. Verkman. Transalveolar osmotic and diffusional water permeability in intact mouse lung measured by a novel surface fluorescence method. J. Gen. Physiol. 108:133–142, 1996.PubMedCrossRefGoogle Scholar
  9. Chinard, F.P., W.O. Cua, and V. Bower. Response of lung microvasculature to sulfhydryl reagents. FASEB J. 8:A1036, 1994.Google Scholar
  10. Chinard, F.P., T. Enns, and M.F. Nolan. The permeability characteristics of the alveolar capillary barrier. Trans. Assoc. Am. Physicians 75:253–261, 1962.PubMedGoogle Scholar
  11. Chinard, F.P., G.H. Vosburgh, and T. Enns. Transcapillary exchange of water and of other substances in certain organs of the dog. Am. J. Physiol. 183:221–234, 1955.PubMedGoogle Scholar
  12. Clarke, L.L., B.R. Grub, J.R. Yankaskas, C.U. Cotton, A. McKenzie, and R.C. Boucher. Relationship of a non-cystic fibrosis transmembrane conductance regulator-mediated chloride conductance to organ-level disease in Cftr(-/-) mice. Proc. Natl. Acad. Sci. USA 91:479–483, 1994.PubMedCrossRefGoogle Scholar
  13. Colin, G. ( 1873) De l’absorption dans les voies aeriennes. Physiol. Compares des Animaux. Paris: Bailliere et Fils.Google Scholar
  14. Cox, K.L., J.N. Isenberg, and M.E. Ament. Gastric acid hypersecretion in cystic fibrosis. J. Pediatr. Gastroenterol. Nutr. 1:559–565, 1982.PubMedCrossRefGoogle Scholar
  15. Cua, W.O., V. Bower, C. Tice, and T.P. Chinard. Pulmonary vascular extraction and distribution of antipyrine with alveolar flooding. Am. J. Physiol. 269 (Heart, Circ Physiol. 38):H1811–H1819, 1995.PubMedGoogle Scholar
  16. Cucchiara, S., F. Santamaria, M.R. Andreotti, R. Minella, P. Ercolini, V. Oggero, and G de Ritis. Mechanisms of gastro-oesophageal reflux in cystic fibrosis. Arch. Dis. in Childhood 66:617–622, 1991.CrossRefGoogle Scholar
  17. Dupuis, J., C.A. Goresky, C. Juneau, A. Calderone, J.L. Rouleau, C.P. Rose, and C. Goresky. Use of norepinephrine uptake to measure lung capillary recruitment with exercise. J. Appl. Physiol. 68:700–713, 1990.PubMedGoogle Scholar
  18. Effros, R.M. Osmotic extraction of hypotonic fluid from the lungs. J. Clin. Invest. 54:935–947, 1974.PubMedCrossRefGoogle Scholar
  19. Effros, R.M. and C. Darin. Efficient anion transport is essential for prompt neutralization of inspired acid: A possible model of lung injury in cystic fibrosis. Am. J. Resp. Crit. Care Med. p. A741, 1995.Google Scholar
  20. Effros, R.M. and R.S.Y. Chang. Distribution of water and proteins in the lungs in pulmonary edema. In: Pulmonary Edema, edited by A. R Fishman and E.M. Renkin. Bethesda, MD: American Physiological Society, pp. 137–144, 1979.Google Scholar
  21. Effros, R.M., G.R. Mason, and P. Silverman. Role of perfusion and diffusion in 14CO2 exchange in the rabbit lung. J. Appl. Physiol. 51:1136–1144, 1981.PubMedGoogle Scholar
  22. Effros, R.M., G.R. Mason, E. Reid, L. Graham, and P. Silverman. Diffusion of labeled water and lipophilic solutes in the lung. Microvasc. Res. 29:45–55, 1985.PubMedCrossRefGoogle Scholar
  23. Effros, R.M., G.R. Mason, K. Sietsema, J. Hukkanen, and P. Silverman. Pulmonary epithelial sieving of small solutes in rat lungs. J. Appl. Physiol. 65:640–648, 1988.PubMedGoogle Scholar
  24. Effros, R.M., et al. Continuous measurements of changes in pulmonary capillary surface area with 201T1 infusions. J. Appl. Physiol. 77:2093–2103, 1994.PubMedGoogle Scholar
  25. Effros, R.M., C. Darin, E.R. Jacobs, R.A. Rogers, G. Krenz, and E.E. Schneeberger. Water transport and the distribution of aquaporin-1 in pulmonary air spaces. J. Appl. Physiol. 83:1002–1016, 1997.PubMedGoogle Scholar
  26. Farber, S. Some organic digestive diseases in early life. J. Mich. Med. Soc. 44:587–594, 1945.Google Scholar
  27. Fiegelson, J., F. Girault, and Y. Pecaue. Short communication: Gastro-oesophageal reflux and esophagitis in cystic fibrosis. Acta Paediatr. Scand. 76:989–990, 1987.CrossRefGoogle Scholar
  28. Flemström, G. Gastric and duodenal mucosal secretion of bicarbonate. In: Physiology of the Gastrointestinal Tract, 3rd edition, edited by L.R. Johnson. New York: Raven Press, pp. 1285–1309, 1984.Google Scholar
  29. Folkesson, H., M.A. Matthay, H. Hasegawa, F. Kheradmand, and A.S. Verkman. Transcellular water transport in lung alveolar epithelium through mercurial-sensitive water channels. Proc. Natl. Acad. Sci. 91:4970–4974, 1994.PubMedCrossRefGoogle Scholar
  30. Garrick, R.A., U.S. Ryan, V. Bower, W.O. Cua, and F.P. Chinard. The diffusional transport of water and small solutes in isolated endothelial cells and erythrocytes. Biochim. Biophys. Acta 1148(1):108–116, 1993.PubMedCrossRefGoogle Scholar
  31. Gill, J.B., T.D. Ruddy, J.B. Newell, D.M. Finkelstein, H.W. Strauss, and A. Boucher. Prognostic importance of thallium uptake by the lungs during exercise in coronary artery disease. N. Engl. J. Med. 317:1485–1489, 1987.CrossRefGoogle Scholar
  32. Goodman, B.E. and E.D. Crandall. Dome formation in primary cultured monolayers of alveolar epithelial cells. Am. J. Physiol. 243:C96–C100, 1982.PubMedGoogle Scholar
  33. Hasegawa, H., S.C. Lian, W.E. Finkbeiner, and A.S. Verkman. Extrarenal tissue distribution of CHIP28 water channels by in situ hybridization and antibody staining. Am. J. Physiol. 266:C893–C903, 1994a.PubMedGoogle Scholar
  34. Hasegawa, H., T. Ma, W. Skach, M.A. Matthay, and A.S. Verkman. Molecular cloning of a mercurial-insensitive water channel expressed in selected water-transporting tissues. J. Biol. Chem. 269:5497–5500, 1994bPubMedGoogle Scholar
  35. Helm, J.F., W.J. Dodds, and W.J. Hogan. Salivary response to esophageal acid in normal subjects and patients with reflux esophagitis. Gastroenterology 92:1393–1397, 1987.Google Scholar
  36. Kennedy, H.H. “Silent” gastroesophageal reflux: An important but little known cause of pulmonary complications. Dis. of the Chest 42:42–45, 1962.CrossRefGoogle Scholar
  37. King, L.S. and P. Agre. Pathophysiology of the aquaporin water channels. [Review] Ann. Rev. Physiol. 58:619–648, 1996.CrossRefGoogle Scholar
  38. King, L.S., S. Nielsen, and P. Agre. Aquaporin-1 water channel protein in lung: Ontogeny, steroid-induced expression, and distribution in rat. J. Clin. Invest. 97:2183–2191, 1996.PubMedCrossRefGoogle Scholar
  39. Krauthammer, M.J., J. Rinderknecht, K. Taplin, K. Wasserman, J.M. Uszler, and R.M. Effros. Enhanced diffusion of small solutes across the pulmonary epithelium in pulmonary fibrosis. Chest 72:403, 1977.Google Scholar
  40. Krenz, G. and R.M. Effros. Mathematical models of clearance of airway water. FASEB J. 9:A570, 1995.Google Scholar
  41. Lea, E.J.A. Permeation through long narrow pores. J. Theor. Biol. 5:102–107, 1963.PubMedCrossRefGoogle Scholar
  42. Lee, M.D., K.Y. Bhakta, S. Raina, R. Yonescu, C.A. Griffin, N.G. Copeland, D.J. Gilbert, N.A. Jenkins, G.M. Preston, and P. Agre. The human Aquaporin-5 gene. Molecular characterization and chromosomal localization. J. Biol. Chem. 271(15):8599–8604, 1996.PubMedCrossRefGoogle Scholar
  43. Lightfoot, E.N., J.B. Bassinghtwaighte, and E.F. Grabowski. Hydrodynamic models for diffusion in microporous membranes. Ann. Biomed. Engin. 4:78–90, 1976.CrossRefGoogle Scholar
  44. Malfroot, A. and I. Dab. New insights on gastro-oesophageal reflux in cystic fibrosis by longitudinal follow up. Dis. in Childhood, 66:617–622, 1991.CrossRefGoogle Scholar
  45. Mason, R.J., M.C. Williams, J.H. Widdicombe, M.J. Sanders, D.S. Misfeldt, and L.C. Berry, Jr. Transepithelial transport by pulmonary alveolar type II cells in primary culture. Proc. Natl. Acad. Sci. USA 79:6033–6037, 1982.PubMedCrossRefGoogle Scholar
  46. Moura, T.R., R.I. Macey, D.Y. Chien, D. Daran, and H. Santos. Thermodynamics of all-or-nothing channels closure in red cells. J. Membr. Biol. 81:105–111, 1984.PubMedCrossRefGoogle Scholar
  47. Paganelli, C.V. and A.K. Solomon. The rate of exchange of tritiated water across the human red cell membrane. J. Gen. Physiol. 41:259–277, 1957.PubMedCrossRefGoogle Scholar
  48. Pappenheimer, J.R., E.M. Renkin, and L.M. Borrero. Filtration, diffusion and molecular sieving through peripheral capillary membranes. A contribution to the pore theory of capillary permeability. Am. J. Physiol. 167:13–46, 1951.PubMedGoogle Scholar
  49. Perl, W., P. Chowdhury, and P.P. Chinard. Reflection coefficients of dog lung endothelium to small hydrophilic solutes. Am. J. Physiol. 228:797–809, 1975.PubMedGoogle Scholar
  50. Poulsen, J.H., H. Fischer, B. Illek, and T.E. Machen. Bicarbonate conductance and pH regulatory capability of cystic fibrosis transmembrane conductance regulator. Proc. Natl. Acad. Sci. USA 91:5340–5344, 1994.PubMedCrossRefGoogle Scholar
  51. Preston, G.M., B.L. Smith, M.L. Zeidel, J.J. Moulds, and P. Agre. Mutations in aquaporin-1 in phenothypically normal humans without functional CHIP water channels. Science 265:1585–1587, 1994.PubMedCrossRefGoogle Scholar
  52. Raina, S., G.M. Preston, W.B. Guggino, and P. Agre. Molecular cloning and characterization of an aquaporin cDNA from salivary, lacrimal, and respiratory tissues. J. Biol. Chem. 270:1908–1912, 1995.PubMedCrossRefGoogle Scholar
  53. Renkin, E.M. Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am. J. Physiol. 197:1205–1210, 1959a.PubMedGoogle Scholar
  54. Renkin, E.M. Exchangeability of tissue potassium in skeletal muscle. Am. J. Physiol. 197:1211–1215, 1959b.PubMedGoogle Scholar
  55. Renkin, E.M. and S. Rosell. Effects of different types of vasodilator mechanisms on vascular tonus and on transcapillary exchange of diffusible material in skeletal muscle. Acta. Physiol. Scand. 54:241–251, 1962.PubMedCrossRefGoogle Scholar
  56. Rinderknecht, J., L. Shapiro, M. Krauthammer, G. Taplin, K. Wasserman, J.M. Uszler, and R.M. Effros. Accelerated clearance of small solutes from the lungs in interstitial lung disease. Am. Rev. Resp. Dis. 121:105–117, 1980.PubMedGoogle Scholar
  57. Schnitzer, J. and P. Oh. Aquaporin-1 in plasma membrane and caveolae provides mercury-sensitive water channels across lung endothelium. Am. J. Physiol. 270 (Heart Circ. Physiol.):H416–H422, 1996.PubMedGoogle Scholar
  58. Sidel, V.W. and A.K. Solomon. Entrance of water into human red cells under an osmotic pressure gradient. J. Gen. Physiol. 41:243–257, 1957.PubMedCrossRefGoogle Scholar
  59. Smith, J.J. and M.J. Welsh. cAMP stimulates bicarbonate secretion across normal, but not cystic fibrosis airway epithelia. J. Clin. Invest 89:1148–1153, 1992.PubMedCrossRefGoogle Scholar
  60. Taylor, A.E. and K.A. Gaar. Estimation of equivalent pore radii of pulmonary capillary and alveolar membranes. Am. J. Physiol. 218:1133–1140, 1970.PubMedGoogle Scholar
  61. Titjen, P.A., R.J. Kaner, and C.E. Quinn.. Aspiration emergencies. Clin. Chest Med. 15:117–135, 1994.Google Scholar
  62. Van Hoek, A.N., M.L. Horn, L.H. Luthjens, M.D. DeJong, J.A. Dempster, and C.H. van Os. Functional unit of 30 kDa for proximal tubule water channels as revealed by radiation inactivation. J. Biol. Chem. 226:1633–16635, 1991.Google Scholar
  63. Van Lieburg, A.F., M.A. Verdijk, V.V. Knoers, A.J. van Essen, W. Proesmans, R. Mall-mann, L.A. Monnens, B.A. van Oost, C.H. van Os, and P.M. Deen. Patients with autosomal nephrogenic diabetes insipidus homozygous for mutations in the aquaporin 2 water-channel gene. Am. J. Human Genetics 55:648–652, 1994.Google Scholar
  64. Van Hoek, A.N., L.H. Luthjens, M.L. Horn, C.H. Van Os, and J.A. Dempster. A 30kDa functional size for the erythrocyte water channel determined in situ by radiation inactivation. Biochem. Biophys. Res. Commun. 184:1331–1338, 1992.PubMedCrossRefGoogle Scholar
  65. Verkman, A. Water Channels. Austin, TX: R.G. Landes Co, 1993.Google Scholar
  66. Wangensteen, O.D., H. Bachofen, and E.R. Weibel. Lung tissue volume changes induced by hypertonic NaCl: Morphometric evaluation. J. Appl. Physiol. 51:1443–1450, 1981.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1998

Authors and Affiliations

  • Richard M. Effros
  • Julie Biller
  • Elizabeth Jacobs
  • Gary S. Krenz

There are no affiliations available

Personalised recommendations