Transport Functions of the Glycocalyx, Specific Proteins, and Caveolae in Endothelium

  • Jan E. Schnitzer


Our current understanding of the molecular, cellular, and physical basis of the barriers and pathways that mediate capillary permeability will be presented in this chapter. Some of the endothelial cell surface proteins involved in the structure and function of specific transendothelial transport pathways will be examined. Many studies utilizing a diversity of experimental approaches including biochemical, morphological, physiological, and theoretical analyses have led to a better understanding of the molecular basis of the interaction of plasma proteins with the endothelium, especially as it relates to those regions that form the critical permselective molecular filters controlling the transendothelial transport of blood molecules. New molecular approaches to investigating capillary permeability are only beginning to identify and characterize the molecular constituents that form or create the main pathways and barriers to molecular transport across vascular endothelium. The emphasis will be on the specific transport proteins of the luminal endothelial cell glycocalyx with a special focus on those proteins associated with noncoated plasmalemmal vesicles or caveolae. Aquaporin and albondin are the two proteins that will be discussed in the greatest detail because of their role in the selective transport of water and albumin, respectively.


Capillary Permeability Endothelial Cell Surface Albumin Binding Microvascular Endothelium Endothelial Glycocalyx 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adamson, R. H. Permeability of frog mesenteric capillaries after partial pronase digestion of the endothelial glycocalyx. J. Physiol. (London) 428:1–13, 1990.Google Scholar
  2. 2.
    Adamson, R. H. and G. Clough. Plasma proteins modify the endothelial glycocalyx of frog mesenteric microvessels. J. Physiol. (London) 455:473–486, 1992.Google Scholar
  3. 3.
    Agre, P., G. M. Preston, B. L. Smith, J. S. Jung, S. Raina, C. Moon, W. B. Guggino, and S. Nielsen. Aquaporin CHIP: the archetypal molecular water channel. Am. Physiol. 265:F463–F476, 1993.Google Scholar
  4. 4.
    Bankston, P. W., G. A. Porter, A. J. Milici, and G. E. Palade. Differential and specific labeling of epithelial and vascular endothelial cells of the rat lung by Lycopersicon esculentum and Griffonia simplicifolia I lectins. Eur. J. Cell Biol. 54:187–195, 1991.PubMedGoogle Scholar
  5. 5.
    Belaiba, R., P. Riant, S. Urien, F. Bree, E. Albengres, J. Barre, and J. P. Tillement. Blood binding and tissue transfer of drugs: the influence of a,-acid glycoprotein binding. In: Progress in Clin. and Biol. Res., Alpha 1 -Acid Glycoprotein: Genetics, Biochemistry, Physiological Functions, and Pharmacology, edited by P. Baumann, C. B. Eap, W. E. Müller, and J.-P. Tillement. New York: Alan R. Liss, Inc., 1989, pp. 287–305.Google Scholar
  6. 6.
    Belloni, P. N. and G. L. Nicolson. Differential expression of cell surface glycoproteins on various organ-derived microvascular endothelia and endothelial cell cultures. J. Cellular Physiol. 136:398–410, 1988.Google Scholar
  7. 7.
    Berthiaume, F. and J. A. Frangos. Flow-induced prostacyclin production is mediated by a pertussin toxin-sensitive G protein. FEBS Lett. 308:277–279, 1992.PubMedGoogle Scholar
  8. 8.
    Brown, M. S. and J. L. Goldstein. Lipoprotein metabolism in the macrophage: Implications for cholesterol deposition in artherosclerosis. Annu. Rev. Biochem. 52:223–261, 1983.PubMedGoogle Scholar
  9. 9.
    Bruns, R. R. and G. E. Palade. Studies on blood capillaries. I. General organization of blood capillaries in muscle. J. Cell Biol. 37:244–276, 1968.PubMedGoogle Scholar
  10. 10.
    Bumbasirevic, V., G. D. Pappas, and R. P. Becker. Endocytosis of serum albumingold conjugates by microvascular endothelial cells in rat adrenal gland: Regional differences between cortex and medulla. J. Submicrosc. Cytol. Pathol. 22:135–145, 1990.PubMedGoogle Scholar
  11. 11.
    Bundgaard, M. The three-dimensional organization of smooth endoplasmic reticulum in capillary endothelia: its possible role in the regulation of free cytosolic calcium. J. Struct. Biol. 107:76–85, 1991.PubMedGoogle Scholar
  12. 12.
    Bundgaard, M. and J. Frokjaer-Jensen. Functional aspects of the ultrastructure of terminal blood vessels: A quantitative study on conservative segments of the frog mesenteric microvasculature. Microvasc. Res. 23:1–30, 1982.PubMedGoogle Scholar
  13. 13.
    Bundgaard, M., J. Frokjaer-Jensen, and C. Crone. Endothelial plasmalemmal vesicles as elements in a system of branching invaginations from the cell surface. Proc. Natl. Acad. Sci. USA 76:6439–6442, 1979.PubMedGoogle Scholar
  14. 14.
    Bundgaard, M., P. Hagman, and C. Crone. The three-dimensional organization of plasmalemmal vesicular profiles in the endothelium of rat heart capillaries. Microvase. Res. 25:358–368, 1983.Google Scholar
  15. 15.
    Carley, W. W., A. J. Milici, and J. A. Madri. Extracellular matrix specificity for the differentiation of capillary endothelial cells. Exp. Cell Res. 178:426–434, 1988.PubMedGoogle Scholar
  16. 16.
    Chambers, R. and B. W. Zweifach. Intercellular cement and capillary permeability. Physiol. Rev. 27:436–463, 1947.PubMedGoogle Scholar
  17. 17.
    Crone, C. Tight and leaky endothelia. In: Water Transport Across Epithelia, edited by H. H. Ussing et al., Copenhagen: Munksgaard, 1981, pp. 259–267.Google Scholar
  18. 18.
    Crone, C. Modulation of solute permeability in microvascular endothelium. Fed. Proc. 45:77–83, 1986.PubMedGoogle Scholar
  19. 19.
    Curry, F. E. Effect of albumin on the structure of the molecular filter at the capillary wall. Fed. Proc. 44:2610–2613, 1985.PubMedGoogle Scholar
  20. 20.
    Curry, F. E. Modulation of venular microvessel permeability by calcium influx into endothelial cells. FASEB J. 6:2456–2466, 1992.PubMedGoogle Scholar
  21. 21.
    Curry, F. E. and C. C. Michel. A fiber matrix model of capillary permeability. Microvasc. Res. 20:96–99, 1980.PubMedGoogle Scholar
  22. 22.
    Curry, F. E., C. C. Michel, and M. E. Philips. Effect of albumin on the oncotic pressure exerted by myoglobin across capillary walls in frog mesentery. J. Physiol. 387:69–82, 1987.PubMedGoogle Scholar
  23. 23.
    Curry, F. E., J. E. Rutledge, and J. F. Lenz. Modulation of microvessel wall charge by plasma glycoprotein orosomucoid. Am. J. Physiol. 257:H1354–H1359, 1989.PubMedGoogle Scholar
  24. 24.
    Czartolomna, J., N. F. Voelkel, and S.-W. Chang. Permeability characteristics isolated perfused rat lungs. J. Appl. Physiol. 70:1854–1860, 1991.PubMedGoogle Scholar
  25. 25.
    Danielli, J. F. Capillary permeability and oedema in the perfused frog. J. Physiol. 98:109–129, 1940.PubMedGoogle Scholar
  26. 26.
    Davis, F. B., P. J. Davis, S. D. Blas, and D. Z. Gombas. Inositol phosphates modulate red blood cell Ca(2+)-adenosine triphosphatase activity in vitro by a guanine nucleotide regulatory protein. Metabolism 44:865–868, 1995.PubMedGoogle Scholar
  27. 27.
    Davis, F. B., P. J. Davis, W. D. Lawrence, and S. D. Blas. Specific inositol phosphates inhibit basal and calmodulin-stimulated Ca(2+)-ATPase activity in human erythrocyte membranes in vitro and inhibit binding of calmodulin to membranes. FASEB J. 5:2992–2995, 1991.PubMedGoogle Scholar
  28. 28.
    De Bruyn, P. P. H., S. Michelson, and P. W. Bankston. In vivo endocytosis by bristlecoated pits and intracellular transport of endogenous albumin in the endothelium of sinuses of liver and bone marrow. Cell Tissue Res. 240:1–7, 1985.PubMedGoogle Scholar
  29. 29.
    Desjardins, C. and B. R. Duling. Heparinase treatment suggests a role for the endothelial glycocalyx in regulation of capillary hematocrit. Am. J. Physiol. 258:H247–H254, 1990.Google Scholar
  30. 30.
    Drinker, C. K. The permeability and diameter of the capillaries in the web of the brown frog (R. temporaria) when perfused with solutions containing pituitary extract and horse serum. J. Physiol. 63:249–269, 1927.PubMedGoogle Scholar
  31. 31.
    Dvorak, H. F., L. F. Brown, M. Detmar, and A. M. Dvorak. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J. Pathol. 146:1029–1039, 1995.PubMedGoogle Scholar
  32. 32.
    Dvorak, H. F., J. A. Nagy, J. T. Dvorak, and A. M. Dvorak. Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am. J. Pathol. 133:95, 1988.PubMedGoogle Scholar
  33. 33.
    Engel, A., T. Walz, and P. Agre. The aquaporin family of membrane water channels. Curr. Opin. Struct. Bio. 4:545–553, 1994.Google Scholar
  34. 34.
    Fajardo, L. F. The complexity of endothelial cells. Am. J. Clin. Pathol. 92:241–250, 1989.PubMedGoogle Scholar
  35. 35.
    Farrell, C. L. and W. M. Pardridge. Blood-brain barrier glucose transporter is asymmetrically distributed on brain capillary endothelial lumenal and ablumenal membranes: An electron microscopic immunogold study. Proc. Natl. Acad. Sci. USA 88:5779–5783, 1991.PubMedGoogle Scholar
  36. 36.
    Finkelstein, A. Water Movement Through Lipid Bilayers, Pores, and Plasma Membranes. Theory and Reality. New York: Wiley, 1987.Google Scholar
  37. 37.
    Folkesson, G. H., M. A. Matthay, H. Hasegawa, F. Kheradmand, and A. S. Verkman. Transcellular water transport in lung alveolar epithelium through mercury-sensitive water channels. Proc. Natl. Acad. Sci. USA 91:4970–4974, 1994.PubMedGoogle Scholar
  38. 38.
    Frokjaer-Jensen, J. Three-dimensional organization of plasmalemmal vesicles in endothelial cells. An analysis by serial sectioning of frog mesenteric capillaries. J. Ultrastructure Res. 73:9–20, 1980.Google Scholar
  39. 39.
    Frokjaer-Jensen, J. The endothelial vesicle system in cryofixed frog mesenteric capillaries analysed by ultrathin serial sectioning. J. Electron Microscopy Tech. 19:291–304, 1991.Google Scholar
  40. 40.
    Frokjaer-Jensen, J., R. C. Wagner, S. B. Andrews, P. Hagman, and T. S. Reese. Three-dimensional organization of the plasmalemmal vesicular system in directly frozen capillaries of the rete mirabile. Cell Tissue Res. 254:17–24, 1988.PubMedGoogle Scholar
  41. 41.
    Galis, Z., L. Ghitescu, and M. Simionescu. Fatty acid binding to albumin increases its uptake and transcytosis by the lung capillary endothelium. Eur. J. Cell Biol. 47:358–365, 1988.PubMedGoogle Scholar
  42. 42.
    Gamble, J. Influence of pH on capillary filtration coefficient of rat mesenteries perfused with solutions containing albumin. J. Physiol. Lond. 387:69–82, 1983.Google Scholar
  43. 43.
    Garcia-Cardena, G., P. Oh, J. Liu, J. E. Schnitzer, and W. C. Sessa. Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: Implication for nitric oxide signaling. Proc. Natl. Acad. Sci. USA 93:6448–6453, 1996.PubMedGoogle Scholar
  44. 44.
    Geoffrey, J. S. and R. P. Becker. Endocytosis by endothelial phagocytes: Uptake of bovine serum albumin-gold conjugates in bone marrow. J. Ultrastructural Res. 89:223–239, 1984.Google Scholar
  45. 45.
    Ghinea, N., M. Eskenasy, M. Simionescu, and N. Simionescu. Endothelial albumin binding proteins are membrane-associated components exposed on the cell surface. J. Biol. Chem. 264:4755–4758, 1989.PubMedGoogle Scholar
  46. 46.
    Ghinea, N., A. Fixman, D. Alexandru, D. Popov, M. Hasu, L. Ghitescu, M. Eskenasy, M. Simionescu, and N. Simionescu. Identification of albumin-binding proteins in capillary endothelial cells. J. Cell Biol. 107:231–239, 1988.PubMedGoogle Scholar
  47. 47.
    Ghinea, N., M. T. V. Hai, M.-T. Groyer-Picard, and E. Milgrom. How protein hormones reach their target cells. Receptor-mediated transcytosis of hCG through endothelial cells. J. Cell Biol. 125:87–97, 1994.PubMedGoogle Scholar
  48. 48.
    Ghitescu, L. and M. Bendayan. Transendothelial transport of albumin: A quantitative immunocytochemical study. J. Cell Biol. 117:745–755, 1992.PubMedGoogle Scholar
  49. 49.
    Ghitescu, L., A. Fixman, M. Simionescu, and N. Simionescu. Specific binding sites for albumin restricted to plasmalemmal vesicles of continuous capillary endothelium: Receptor-mediated transcytosis. J. Cell Biol. 102:1304–1311, 1986.PubMedGoogle Scholar
  50. 50.
    Goldstein, J. L. and M. S. Brown. Binding and degradation of low density lipoproteins by cultured human fibroblasts: Comparison of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia. J. Biol. Chem. 249:5153–5162, 1974.PubMedGoogle Scholar
  51. 51.
    Goldstein, J. L., M. S. Brown, R. G. W. Anderson, D. N. Russel, and W. J. Schneider. Receptor-mediated endocytosis: Concepts emerging from the LDL receptor system. Ann. Rev. Cell Biol. 1:1–39, 1985.PubMedGoogle Scholar
  52. 52.
    Haberland, M. E., R. R. Rasmussen, C. L. Olch, and A. M. Fogelman. Two distinct receptors account for recognition of maleyl-albumin in human monocytes during differentiation in vitro. J. Clin. Invest. 77:681–689, 1986.PubMedGoogle Scholar
  53. 53.
    Haraldsson, B. Physiological studies of macromolecular transport across capillary walls. Acta Physiol. Scand. Suppl. 553:1–40, 1986.PubMedGoogle Scholar
  54. 54.
    Haraldsson, B. and B. Rippe. Serum factors other than albumin are needed for the maintenance of normal capillary permselectivity in rat hindlimb muscle. Acta Physiol. Scand. 123:427–436, 1985.PubMedGoogle Scholar
  55. 55.
    Haraldsson, B. and B. Rippe. Orosomucoid as one of the serum components contributing to normal permselectivity in rat skeletal muscle. Acta Physiol. Scand. 129:127–135, 1987.PubMedGoogle Scholar
  56. 56.
    Hasegawa, H., S.-C. Lian, W. E. Finkbeiner, and A. S. Verkman. Extrarenal tissue distribution of CHIP28 water channels by in situ hybridization and antibody staining. Am. J. Physiol. 266:C893–C903, 1994.PubMedGoogle Scholar
  57. 57.
    Hasegawa, H., T. Ma, W. Skach, M. A. Matthay, and A. S. Verkman. Molecular cloning of a mercurial-insensitive water channel expressed in selected watertransporting tissues. J. Biol. Chem. 269:5497–5500, 1994.PubMedGoogle Scholar
  58. 58.
    He, P. and F. E. Curry. Albumin modulation of capillary permeability—Role of endothelial cell [Ca++]. Am. J. Physiol. 265:H74–H82, 1993.PubMedGoogle Scholar
  59. 59.
    Hennig, B., D. M. Shasby, A. B. Fulton, and A. A. Spector. Exposure to free fatty acids increases the transfer of albumin across cultured endothelial monolayers. Arteriosclerosis 4:489–497, 1984.PubMedGoogle Scholar
  60. 60.
    Horiuchi, S., K. Takata, and Y. Morino. Characterization of a membrane-associated receptor from rat sinusoidal liver cell that binds formaldehyde-treated serum albumin. J. Biol. Chem. 260:475–481, 1985.PubMedGoogle Scholar
  61. 61.
    Hutter, J. F., H. M. Piper, and P. G. Spieckermann. Myocardial fatty acid oxidation: Evidence for an albumin-receptor-mediated transfer of fatty acids. Basic Res. Cardiol. 79:274–282, 1984.PubMedGoogle Scholar
  62. 62.
    Huxley, V. H. and F. E. Curry. Albumin modulation of capillary permeability: Test of an adsorption mechanism. Am. J. Physiol. 248:H264–H273, 1985.PubMedGoogle Scholar
  63. 63.
    Huxley, V. H. and F. E. Curry. Differential actions of albumin and plasma on capillary solute permeability. Am. J. Physiol. 260:H1645–H1654, 1991.PubMedGoogle Scholar
  64. 64.
    Jacobson, B. S., J. E. Schnitzer, and G. E. Palade. Isolation and partial characterization of the luminal plasmalemma of microvascular endothelium from rat lungs. Eur. J. Cell Biol. 58:296–306, 1992.PubMedGoogle Scholar
  65. 65.
    Jaffe, E. A. Cell biology of endothelial cells. Hum. Pathol. 18:234–239, 1987.PubMedGoogle Scholar
  66. 66.
    Jeffries, W. A., M. R. Brandon, S. V. Hunt, A. F. Williams, K. C. Gatter, and D. Y. Mason. Transferrin receptor on endothelium of brain capillaries. Nature 312:162–163, 1984.Google Scholar
  67. 67.
    Johansson, B. R. Size and distribution of endothelial plasmalemmal vesicles in consecutive segments of the microvasculature in cat skeletal muscle. Microvasc. Res. 17:107–117, 1979.PubMedGoogle Scholar
  68. 68.
    Judd, R. L., M. G. Sarr, and J. M. Miles. Role of albumin in extravascular transport of free fatty acids. FASEB J. 6:A1495, 1992.Google Scholar
  69. 69.
    Kern, D. F., D. Levitt, and D. Wangensteen. Endothelial albumin permeability measured with a new technique in perfused rabbit lung. Am. J. Physiol. 245:H229–H236, 1983.PubMedGoogle Scholar
  70. 70.
    King, G. L. and S. M. Johnson. Receptor-mediated transport of insulin across endothelial cells. Science 227:1583–1586, 1985.PubMedGoogle Scholar
  71. 71.
    Kohn, S., J. Nagy, H. Dvorak, and A. Dvorak. Pathways of macromolecular tracer transport across venules and small veins. Structural basis for the hyperpermeability of tumor blood vessels. Lab. Invest. 67:596, 1992.PubMedGoogle Scholar
  72. 72.
    Kragh-Hansen, U. Molecular aspects of ligand binding to serum albumin. Pharmacol. Res. 33:17–53, 1981.Google Scholar
  73. 73.
    Kramer, R. H. and G. L. Nicolson. Interactions of tumor cells with vascular endothelial cell monolayers: a model for metastatic invasion. Proc. Natl. Acad. Sci. USA 76:5704–5708, 1979.PubMedGoogle Scholar
  74. 74.
    Kremer, J. M. H., J. Wilting, and L. H. M. Janssen. Drug binding to human alpha-1-acid glycoprotein in health and disease. Pharmacological Reviews 40:1–47, 1988.PubMedGoogle Scholar
  75. 75.
    Krough, A. and G. A. Harrop. Some observations on stasis and oedema. J. Physiol. 54:125–126, 1921.Google Scholar
  76. 76.
    Kuchan, M. J., H. Jo, and J. A. Frangos. Role of G proteins in shear stress-mediated nitric oxide production by endothelial cells. Am. J. Physiol. 267:C753–C758, 1994.PubMedGoogle Scholar
  77. 77.
    Kuno, M. and P. Gardner. Ion channels activated by inositol 1,4,5-trisphosphate in plasma membrane of human T-lymphocytes. Nature 326:301–304, 1987.PubMedGoogle Scholar
  78. 78.
    Landis, E. M. and J. R. Pappenheimer. Exchange of substances through the capillary walls. In: Handbook of Physiology, Sect. 2, Circulation II, Washington, DC: Am. Physiol. Soc., 1963, 961–1034.Google Scholar
  79. 79.
    Levick, J. R. and C. C. Michel. The effect of bovine albumin on the permeability of frog mesenteric capillaries. Q. J. Exper. Physiol. Cogn. Med. Sci. 58:87–97, 1973.Google Scholar
  80. 80.
    Levitt, D. G. Routes of membrane water transport: comparative physiology. In: Water Transport Across Epithelia, edited by H. H. Ussing et al., Copenhagen: Munksgaard, 1981, pp. 248–257.Google Scholar
  81. 81.
    Liu, J., P. Oh, T. Horner, R. A. Rogers, and J. Schnitzer. Organized endothelial cell surface signal transduction in caveolae distinct from GPI-anchored protein microdomains. J. Biol. Chem. 272:7211–7222, 1997.PubMedGoogle Scholar
  82. 82.
    Loo, D. D. F., T. Zeuthen, G. Chandy, and E. M. Wright. Cotransport of water by the Na+/Vglucose contransporter. Proc. Natl. Acad. Sc. (USA) 93:13367–13370, 1996.Google Scholar
  83. 83.
    Luckhof, A. and D. E. Clapham. Inositol 1,3,4,5-tetrakisphosphate activates an endothelial Ca(2+)-permeable channel. Nature (Lond.) 355:356–358, 1992.Google Scholar
  84. 84.
    Macey, R. I. Transport of water and urea in red blood cells. Am. J. Physiol. 246: C195–C203, 1984.PubMedGoogle Scholar
  85. 85.
    Madri, J. A. and S. K. Williams. Capillary endothelial cell culture: Phenotype modulation by matrix components. J. Cell Biol. 97:153–165, 1983.PubMedGoogle Scholar
  86. 86.
    Mann, G. E. Alterations of myocardial capillary permeability by albumin in the isolated, perfused rabbit heart. J. Physiol. Lond. 319:311–323, 1981.PubMedGoogle Scholar
  87. 87.
    McGuire, P. G. and T. A. Twietmeyer. Morphology of rapidly frozen endothelial cells. Gluteraldehyde fixation increases the number of caveolae. Circ. Res. 53:424–429, 1983.PubMedGoogle Scholar
  88. 88.
    McNamara, P. J., R. C. Jewell, and M. N. Gillespie. The interaction of alpha-1-acid glycoprotein with endogenous autocoids, in particular, platelet activating factor (PAF). In: Progress in Clin, and Biol. Res., Alpha 1 -Acid Glycoprotein: Genetics, Biochemistry, Physiological Functions, and Pharmacology, edited by P. Baumann, C. B. Eap, W. E. Müller, and J.-P. Tillement. New York: Alan R. Liss, Inc., 1989, pp. 307–319.Google Scholar
  89. 89.
    Merker, M., W. W. Carley, and G. L. Gillis. In situ iodination of angiotensinconverting enzyme and other pulmonary endothelial membrane proteins. Biochem. Pharm. 38:983–992, 1989.PubMedGoogle Scholar
  90. 90.
    Michel, C. C. Filtration coefficients and osmotic reflexion coefficients of the walls of single frog mesenteric capillaries. J. Physiol. Lond. 309:341–355, 1980.PubMedGoogle Scholar
  91. 91.
    Michel, C. C., M. E. Phillips, and M. R. Turner. The effects of native and modified bovine serum albumin on the permeability of frog mesenteric capillaries. J. Physiol. Lond. 360:333–346, 1985.PubMedGoogle Scholar
  92. 92.
    Milici, A. J., M. B. Furie, and W. W. Carley. The formation of fenestrations and channels by capillary endothelium in vitro. Proc. Natl Acad Sci USA 82:6181–6185, 1985.PubMedGoogle Scholar
  93. 93.
    Milici, A. J. and G. A. Porter. Lectin and immunolabeling of microvascular endothelia. J. Electron Microsc. Tech. 19:305–315, 1991.PubMedGoogle Scholar
  94. 94.
    Milici, A. J., N. E. Watrous, H. Stukenbrok, and G. E. Palade. Transcytosis of albumin in capillary endothelium. J. Cell Biol. 105:2603–2612, 1987.PubMedGoogle Scholar
  95. 95.
    Myhre, K. and J. B. Steen. The effect of plasma proteins on the capillary permeability in the rete mirabile of the eel (Anguilla vulgaris L.). Acta Physiol. Scand. 99:98–104, 1977.PubMedGoogle Scholar
  96. 96.
    Neal, C. R. and C. C. Michel. Transcellular openings through microvascular walls in acutely inflamed frog mesentery. Exper. Physiol. 77:917–920, 1992.Google Scholar
  97. 97.
    Nielsen, S., B. L. Smith, E. I. Christensen, and P. Agre. Distribution of the aquaporin CHIP in secretory and resportive epithelia and capillary endothelia. Proc. Natl. Acad. Sci. USA 90:7275–7279, 1993.PubMedGoogle Scholar
  98. 98.
    Ockner, R. K., R. A. Weisiger, and J. L. Gollan. Hepatic uptake of albumin-bound substances: albumin receptor concept. Am. J. Physiol. 245:G13–G18, 1983.PubMedGoogle Scholar
  99. 99.
    Palade, G. E. Transport in quanta across the endothelium of blood capillaries. Anat. Rec. 136:254, 1960.Google Scholar
  100. 100.
    Palade, G. E. The microvascular endothelium revisited. In: Endothelial Cell Biology in Health and Disease, edited by N. Simionescu and M. Simionescu, New York & London: Plenum Press, 1988, pp. 3–22.Google Scholar
  101. 101.
    Palade, G. E. and R. R. Bruns. Structural modulations of plasmalemmal vesicles. J. Cell Biol. 37:633–649, 1968.PubMedGoogle Scholar
  102. 102.
    Pappenheimer, J. R., E. M. Renkin, and L. M. Borrero. Filtration diffusion and molecular seiving through peripheral capillary membranes. A contribution to the pore theory of capillary permeability. Am. J. Physiol. 167:13–46, 1951.PubMedGoogle Scholar
  103. 103.
    Pardridge, W. M., J. Eisenberg, and W. T. Cefalu. Absence of albumin receptor on brain capillaries in vivo or in vitro. Am. J. Physiol. 249:E264–E267, 1985.PubMedGoogle Scholar
  104. 104.
    Peters, K.-R., C. C. Carley, and G. E. Palade. Endothelial plasmalemmal vesicles have a characteristic stripped bipolar surface structure. J. Cell Biol. 101:2233, 1985.PubMedGoogle Scholar
  105. 105.
    Peters, T., Jr. Serum albumin. Adv. Prot. Chem. 37:161–245, 1985.Google Scholar
  106. 106.
    Pino, R. M. The cell surface of a restrictive fenstrated endothelium I. Distribution of lectin-receptor monosaccharides on the choriocapillaries. Cell Tissue Res. 243:145–155, 1986.PubMedGoogle Scholar
  107. 107.
    Pino, R. M. and C. L. Thouron. Identification of lectin-receptor monosaccharides on the endothelium of retinal capillaries. Curr. Eye Res. 5:625–628, 1986.PubMedGoogle Scholar
  108. 108.
    Porter, G. A., G. E. Palade, and A. J. Milici. Differential binding of lectins Griffonia simplicifolia I and Lycopersicon esculentum to microvascular endothelium: organspecific localization and partial glycoprotein characterization. Eur. J. Cell Biol. 51:85–95, 1990.PubMedGoogle Scholar
  109. 109.
    Powers, M. R., F. A. Blumenstock, J. A. Cooper, and A. B. Malik. Role of albumin arginyl sites in albumin-induced reduction of endothelial hydraulic conductivity. J. Cellular Physiol. 141:558–564, 1989.Google Scholar
  110. 110.
    Predescu, D., R. Horvat, S. Predescu, and G. E. Palade. Transcytosis in the continuous endothelium of the myocardial microvasculature is inhibited by N-ethylmaleimide. Proc. Natl. Acad. Sci. USA 91:3014–3018, 1994.PubMedGoogle Scholar
  111. 111.
    Predescu, D. and G. E. Palade. Plasmalemmal vesicles represent the large pore system of continuous microvascular endothelium. Am. J. Physiol. 265:H725–H733, 1993.PubMedGoogle Scholar
  112. 112.
    Reed, R. G. and C. M. Burrington. The albumin receptor effect may be due to a surface-induced conformational change in albumin. J. Biol. Chem. 264:9867–9872, 1989.PubMedGoogle Scholar
  113. 113.
    Renkin, E. M. Capillary transport of macromolecules: pores and other pathways. J. Appl. Physiol. 134:375–382, 1985.Google Scholar
  114. 114.
    Roberts, W. G. and G. E. Palade. Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J. Cell Sci. 108:2369–2379, 1995.PubMedGoogle Scholar
  115. 115.
    Rothberg, K. G., J. E. Heuser, W. D. Donzell, Y.-S. Ying, J. R. Glenney, and R. G. W. Anderson. Caveolin, a protein component of caveolae membrane coats. Cell 68:673–682, 1992.PubMedGoogle Scholar
  116. 116.
    Sage, E. H. and P. Bornstein. Extracellular proteins that modulate cell-matrix interactions. J. Biol. Chem. 266:14831–14834, 1991.PubMedGoogle Scholar
  117. 117.
    Sage, H., C. Johnson, and P. Bornstein. Characterization of a novel serum albumin-binding glycoprotein secreted by endothelial cells in culture. J. Biol. Chem. 259: 3993–4007, 1984.PubMedGoogle Scholar
  118. 118.
    Schmid, K. Human plasma α 1acid glycoprotein. In: Progress in Clin, and Biol. Res., Alpha 1 -Acid Glycoprotein: Genetics, Biochemistry, Physiological Functions, and Pharmacology, edited by P. Baumann, C. B. Eap, W. E. Müller, and J.-P. Tillement. New York: Alan R. Liss, Inc., 1989, pp. 7–22.Google Scholar
  119. 119.
    Schneeberger, E. E. and M. Hamelin. Interaction of serum proteins with lung endothelial glycocalyx: Its effect on endothelial permeability. Am. J. Physiol. 247:H206–H217, 1984.PubMedGoogle Scholar
  120. 120.
    Schneeberger, E. E., L. R. D., and B. A. Neary. Interaction of native and chemically modified albumin with pulmonary microvascular endothelium. Am. J. Physiol. 258:L89–L98, 1990.PubMedGoogle Scholar
  121. 121.
    Schnitzer, J. E. Analysis of steric partition behavior of molecules in membranes using statistical physics: Application to gel chromatography and electrophoresis. Biophys. J. 54:1065–1076, 1988.PubMedGoogle Scholar
  122. 122.
    Schnitzer, J. E. Glycocalyx electrostatic potential profile analysis: ion, pH, steric, and charge effects. Yale J. Biol. Med. 61:427–446, 1988.PubMedGoogle Scholar
  123. 123.
    Schnitzer, J. E. Fiber matrix model re-analysis: Matrix exclusion limits define effective pore radius describing capillary and glomerular permselectivity. Microvasc. Res. 43:342–346, 1992.PubMedGoogle Scholar
  124. 124.
    Schnitzer, J. E. Gp60 is an albumin binding glycoprotein expressed by continuous endothelium involved in albumin transcytosis. Am. J. Physiol. 31:H246–H254, 1992.Google Scholar
  125. 125.
    Schnitzer, J. E. Update on the cellular and molecular basis of capillary permeability. Trends in Cardiovasc. Med. 3:124–130, 1993.Google Scholar
  126. 126.
    Schnitzer, J. E. Molecular architecture of endothelial caveolae: Possible stresssensing organelles. Annals Biomed. Engineering 23:S34, 1995.Google Scholar
  127. 127.
    Schnitzer, J. E. and J. Bravo. High affinity binding, endocytosis and degradation of conformationally-modified albumins: Potential role of gp30 and gp18 as novel scavenger receptors. J. Biol. Chem. 268:7562–7570, 1993.PubMedGoogle Scholar
  128. 128.
    Schnitzer, J. E. and W. W. Carley. Electrostatic and steric partition function of the endothelial glycocalyx. Fed. Proc. 45:1152a, 1986.Google Scholar
  129. 129.
    Schnitzer, J. E., W. W. Carley, and G. E. Palade. Albumin interacts specifically with a 60-kDa microvascular endothelial glycoprotein. Proc. Natl. Acad. Sci. USA 85:6773–6777, 1988.PubMedGoogle Scholar
  130. 130.
    Schnitzer, J. E., W. W. Carley, and G. E. Palade. Specific albumin binding to microvascular endothelium in culture. Am. J. Physiol. 254:H425–H437, 1988.PubMedGoogle Scholar
  131. 131.
    Schnitzer, J. E. and K. Lambrakis. Electrostatic potential and Born energy of charged molecules interacting with phospholipid membranes: Calculation via 3-D numerical solution of the full Poisson equation. J. Theor. Biol. 152:203–222, 1991.PubMedGoogle Scholar
  132. 132.
    Schnitzer, J. E., J. Liu, and P. Oh. Endothelial caveolae have the molecular transport machinery for vesicle budding, docking and fusion including VAMP, NSF, SNAP, annexins and GTPases. J. Biol. Chem. 210:14399–14404, 1995.Google Scholar
  133. 133.
    Schnitzer, J. E., D. P. Mcintosh, A. M. Dvorak, J. Liu, and P. Oh. Separation of caveolae from associated microdomains of GPI-anchored proteins. Science 269: 1435–1439, 1995.PubMedGoogle Scholar
  134. 134.
    Schnitzer, J. E. and P. Oh. Antibodies to SPARC inhibit albumin binding to SPARC, gp60 and microvascular endothelium. Am. J. Physiol. 263:H1872–H1879, 1992.PubMedGoogle Scholar
  135. 135.
    Schnitzer, J. E. and P. Oh. Albondin-mediated capillary permeability to albumin: Differential role of receptors in endothelial transcytosis and endocytosis of native and modified albumins. J. Biol. Chem. 269:6072–6082, 1994.PubMedGoogle Scholar
  136. 136.
    Schnitzer, J. E. and P. Oh. Aquaporin-1 in plasma membrane and caveolae provides mercury-sensitive water channels across lung endothelium. Am. J. Physiol. 270: H416–H422, 1996.PubMedGoogle Scholar
  137. 137.
    Schnitzer, J. E., P. Oh, B. S. Jacobson, and A. M. Dvorak. Caveolae from luminal plasmalemma for rat lung endothelium: Microdomains enriched in caveolin, Ca2+/ ATPase and inositol trisphosphate receptor. Proc. Natl. Acad. Sci. USA 92:1759–1763, 1995.PubMedGoogle Scholar
  138. 138.
    Schnitzer, J. E., P. Oh, E. Pinney, and A. Allard. Filipin-sensitive caveolae-mediated transport in endothelium: Reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J. Cell. Biol. 127:1217–1232, 1994.PubMedGoogle Scholar
  139. 139.
    Schnitzer, J. E., P. Oh, E. Pinney, and J. Allard. NEM inhibits transcytosis, endocytosis and capillary permeability: Implication of caveolae fusion in endothelia. Am. J. Physiol. 37:H48–H55, 1995.Google Scholar
  140. 140.
    Schnitzer, J. E. and E. Pinney. Quantitation of specific binding of orosomucoid to cultured microvascular endothelium: Role in capillary permeability. Am. J. Physiol. 263:H48–H55, 1992.PubMedGoogle Scholar
  141. 141.
    Schnitzer, J. E., C.-P. J. Shen, and G. E. Palade. Lectin analysis of common glycoproteins detected on the surface of continuous microvascular endothelium in situ and in culture: Identification of sialoglycoproteins. Eur. J. Cell Biol. 52:241–251, 1990.PubMedGoogle Scholar
  142. 142.
    Schnitzer, J. E., A. Siflinger-Birnboim, P. J. Del Vecchio, and A. B. Malik. Segmental differentiation of permeability, protein glycosylation, and morphology of cultured bovine lung vascular endothelium. Biochem. Biophys. Res. Comm. 199:11–19, 1994.PubMedGoogle Scholar
  143. 143.
    Schnitzer, J. E., A. Sung, R. Horvat, and J. Bravo. Preferential interaction of albumin binding proteins, gp30 and gp18, with modified albumins: Presence in many cells and tissues with a possible role in catabolism. J. Biol. Chem. 264:24544–24553, 1992.Google Scholar
  144. 144.
    Schnitzer, J. E., J. B. Ulmer, and G. E. Palade. A major endothelial plasmalemmal sialoglycoprotein, gp60, is immunologically related to glycophorin. Proc. Nat. Acad. Sci. USA 87:6843–6847, 1990.PubMedGoogle Scholar
  145. 145.
    Schnitzer, J. E., J. B. Ulmer, and G. E. Palade. Common peptide epitopes in glycophorin and the endothelial sialoglycoprotein gp60. Biochem. Biophys. Res. Comm. 187:1158–1165, 1992.PubMedGoogle Scholar
  146. 146.
    Schwartz, C. J. Pathophysiology of the atherogenic process. Am. J. Cardiology 64:23–30, 1989.Google Scholar
  147. 146a.
    Schnitzer, J. E., J. Liu, and P. Oh. Purification of endothelial caveolae reveals the molecular machinery for fusion-dependent, albondin-mediated transcytosis of albumin. Microcirculation 2:93, 1995.Google Scholar
  148. 147.
    Simionescu, M., N. Ghinea, A. Fixman, M. Lasser, L. Kukes, N. Simionescu, and G. E. Palade. The cerebral microvasculature of the rat: Structure and luminal surface properties during early development. J. Submicrosc. Cytol. Pathol. 20:243–261, 1988.PubMedGoogle Scholar
  149. 148.
    Simionescu, M., N. Simionescu, and G. E. Palade. Morphometric data on the endothelium of blood capillaries. J. Cell Biol. 60:128–152, 1974.PubMedGoogle Scholar
  150. 149.
    Simionescu, M., N. Simionescu, and G. E. Palade. Differentiated microdomains on the luminal surface of capillary endothelium: Distribution of lectin receptors. J. Cell Biol. 94:406–413, 1982.PubMedGoogle Scholar
  151. 150.
    Solomon, A. K., J. A. Dix, M. F. Lukacovic, M. R. Toon, and A. S. Verkman. The aqueous pore in the red cell membrane: Band 3 as a channel for anions, cations, nonelectrolytes, and water. Ann. NY Acad. Sci. 414:97–124, 1983.PubMedGoogle Scholar
  152. 151.
    Sparrow, C. P., S. Parthasarathy, and D. Steinberg. A macrophage receptor that recognizes oxidized low density lipoprotein but not acetylated low density lipoprotein. J. Biol. Chem. 264:2599–2604, 1989.PubMedGoogle Scholar
  153. 152.
    Starling, E. H. On the absorption of fluids from the connective tissue spaces. J. Physiol. (London) 19:312–326, 1896.Google Scholar
  154. 153.
    Steinberg, D., S. Parthasarathy, T. E. Carew, J. C. Khoo, and J. L. Witztum. Beyond cholesterol; modification of low-density lipoprotein that increase its atherogenicity. New Engl. J. Med. 320:915–924, 1989.PubMedGoogle Scholar
  155. 154.
    Sung, A., V. Rizzo, P. Oh, and J. E. Schnitzer. Rapid mechanotransduction occurs in situ at the endothelial cell surface primarily in caveolae. Mol. Biol. Cell 7:276a, 1996.Google Scholar
  156. 155.
    Suzuki, S. and H. Sugi. Evidence for extracellular localization of activator calcium in dog coronary artery smooth muscle as studies by the pyroantimonate method. Cell Tissue Res. 257:237–246, 1989.PubMedGoogle Scholar
  157. 156.
    Tavassoli, M., T. Kishimoto, and M. Kataoka. Liver endothelium mediates the hepatocyte’s uptake of ceruloplasmin. J. Cell Biol. 102:1298–1303, 1986.PubMedGoogle Scholar
  158. 157.
    Taylor, A. E. and D. N. Granger. Exchange of macromolecules across the microcirculation. In: Handbook of Physiology, edited by E. M. Renkin and C. C. Michel, Bethesda, MD: Am. Physiol. Soc., 1984, pp. 467–520.Google Scholar
  159. 158.
    Tiruppathi, C., A. Finnegan, and A. B. Malik. Isolation and characterization of a cell surface albumin-binding protein from vascular endothelial cells. Proc. Natl. Acad. Sci. USA 93:250–254, 1996.PubMedGoogle Scholar
  160. 159.
    van Os, C. H., P. M. T. Deen, and J. A. Dempster. Aquaporins: Water selective channels in biological membranes. Molecular structure and tissue distribution. Biochim. et Biophys. Acta 1197:291–309, 1994.Google Scholar
  161. 160.
    Vasile, E., M. Simionescu, and N. Simionescu. Visualization of binding, endocytosis, and transcytosis of low-density lipoprotein in arterial endothelium in situ. J. Cell Biol. 96:1677–1689, 1983.PubMedGoogle Scholar
  162. 161.
    Verkman, A. S. Mechanisms and regulation of water permeability in renal epithelia. Am. Physiol. 257:C837–C850, 1989.Google Scholar
  163. 162.
    Villaschi, S., L. Johns, M. Cirigliano, and G. G. Pietra. Binding and uptake of native and glycosylated albumin-gold complexes in perfused rat lungs. Microvasc. Res. 32:190–199, 1986.PubMedGoogle Scholar
  164. 163.
    Vorbrodt, A. W., A. S. Lossinsky, D. H. Dobrogowska, and H. M. Wisniewski. Distribution of anionic sites and glycoconjugates on the endothelial surfaces of the developing blood-brain barrier. Dev. Brain Res. 29:69–79, 1986.Google Scholar
  165. 164.
    Wagner, R. C. and S. B. Andrews. Ultrastructure of the vesicular system in rapidly frozen capillary endothelium of the rete mirabile. J. Ultrastructure Res. 90:172–182, 1985.Google Scholar
  166. 165.
    Wagner, R. C., C. S. Robinson, P. J. Cross, and J. J. Devenney. Endocytosis and exocytosis of transferrin by isolated capillary endothelium. Microvasc. Res. 25:387–396, 1983.PubMedGoogle Scholar
  167. 166.
    Wagner, R. C. and C. S.-C. Transcapillary transport of solute by the endothelial vesicular system: Evidence from thin serial section analysis. Microvasc. Res. 42:139–150, 1991.PubMedGoogle Scholar
  168. 167.
    Weisiger, R. A., J. L. Gollan, and R. K. Ockner. Receptor for albumin on the liver cell surface may mediate uptake of fatty acids and other albumin-bound substances. Science 211:1048–1051, 1981.PubMedGoogle Scholar
  169. 168.
    Yokota, S. Immunocytochemical evidence for transendothelial transport of albumin and fibrinogen in rat heart and diaphragm. Biomed. Res. 4:577–586, 1983.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1998

Authors and Affiliations

  • Jan E. Schnitzer

There are no affiliations available

Personalised recommendations