Advertisement

Impact of Extracellular and Intracellular Diffusion on Hepatic Uptake Kinetics

  • Richard A. Weisiger

Abstract

The selective transport of small molecules is among the most fundamental functions of living cells. Selectivity is largely due to the plasma membrane, which contains carrier proteins that increase the permeability of many molecules. However, not all molecules require carriers. Molecules that are sufficiently hydrophobic can easily dissolve in the membrane core, but have much greater difficulty crossing the aqueous layers on either side of the plasma membrane (Figure 16.1). For many such molecules, transport across these intra- and extracellular water layers may limit the uptake rate under physiologic circumstances. In response to this limitation, organisms have evolved aqueous carrier systems (the soluble binding proteins) that catalyze the transport of poorly soluble molecules across these water layers. This chapter will discuss these transport processes and how soluble carrier systems may influence the observed uptake kinetics. It shall be argued that plasma and cytosolic binding proteins represent true carrier systems, producing all of the features of carrier-mediated kinetics. Failure to consider these carrier systems can lead to misinterpretation of uptake data.

Keywords

Bile Acid Organic Anion Bile Secretion Liver Plasma Membrane Bile Acid Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aizawa, H., Y. Sekine, R. Takemura, Z. Zhang, M. Nangaku, and N. Hirokawa. Kinesin family in murine central nervous system. J. Cell. Biol. 119:1287–1296, 1992.PubMedCrossRefGoogle Scholar
  2. 2.
    Al-Baldawi, N.F. and R.F. Abercrombie. Cytoplasmic hydrogen ion diffusion coefficient. Biophys. J. 61:1470–1479, 1992.PubMedCrossRefGoogle Scholar
  3. 3.
    Amaratunga, A., S.E. Leeman, K.S. Kosik, and R.E. Fine. Inhibition of kinesin synthesis in vivo inhibits the rapid transport of representative proteins for three transport vesicle classes into the axon. J. Neurochem. 64:2374–2376, 1995.PubMedCrossRefGoogle Scholar
  4. 4.
    Andersen, O. and M. Fuchs. Potential energy barriers to ion transport within lipid bilayers: Studies with tetraphenylborate. Biophys. J. 15:795–830, 1975.PubMedCrossRefGoogle Scholar
  5. 5.
    Aoyama, N., T. Ohya, K. Chandler, S. Gresky, and R.T. Holzbach. Transcellular transport of organic anions in the isolated perfused rat liver: The differential effects of monensin and colchicine. Hepatology 14:1–9, 1991.PubMedCrossRefGoogle Scholar
  6. 6.
    Aoyama, N., H. Tokumo, T. Ohya, K. Chandler, and R.T. Holzbach. A novel transcellular transport pathway for non-bile salt cholephilic organic anions. Am. J. Physiol. 261:G305–G311, 1991.PubMedGoogle Scholar
  7. 7.
    Atri, A., J. Amundson, D. Clapham, and J. Sneyd. A single-pool model for intracellular calcium oscillations and waves in the Xenopus laevis oocyte. Biophys. J. 65:1727–1739, 1993.PubMedCrossRefGoogle Scholar
  8. 8.
    Baker, K.J. and S.E. Bradley. Binding of sulfobromophthalein (BSP) sodium by plasma albumin. Its role in hepatic BSP extraction. J. Clin. Invest. 45:281–287, 1966.PubMedCrossRefGoogle Scholar
  9. 9.
    Barlow, J.W., L.E. Raggatt, C.F. Lim, D.J. Topliss, and J.R. Stockigt. Characterization of cytoplasmic T3 binding sites by adsorption to hydroxyapatite: Effects of drug inhibitors of T3 and relationship to glutathione-S-transferases. Thyroid 2:39–44, 1992.PubMedCrossRefGoogle Scholar
  10. 10.
    Barry, P.H. and J.M. Diamond. Effects of unstirred layers on membrane phenomena. Physiol. Rev. 64:763–872, 1984.PubMedGoogle Scholar
  11. 11.
    Bass, L. and S.M. Pond. The puzzle of rates of cellular uptake of protein-bound ligands. In: Pharmacokinetics: Mathematical and Statistical Approaches to Metabolism and Distribution of Chemicals and Drugs, edited by A. Pecile and A. Rescigno. London: Plenum Press, 1988, pp. 241–265.Google Scholar
  12. 12.
    Bass, N.M. Cellular binding proteins for fatty acids and retinoids: Similar or specialized functions? Mol. Cell. Biochem. 123:191–202, 1993.PubMedCrossRefGoogle Scholar
  13. 13.
    Bass, N.M., R.M. Kaikaus, and R.K. Ockner. Physiology and molecular biology of hepatic cytosolic fatty acid-binding protein. In: Hepatic Transport and Bile Secretion: Physiology and Pathophysiology, edited by N. Tavoloni and P.D. Berk. New York: Raven Press, 1993, pp. 421–446.Google Scholar
  14. 14.
    Bassingthwaighte, J.B., L. Noodleman, G.J. Van der Vusse, and J.F. Glatz. Modeling of palmitate transport in the heart. Mol. Cell. Biochem. 88:51–58, 1989.PubMedCrossRefGoogle Scholar
  15. 15.
    Bassingthwaighte, J.B., C.Y. Wang, and I.S. Chan. Blood-tissue exchange via transport and transformation by capillary endothelial cells. Circ. Res. 65:997–1020, 1989.PubMedGoogle Scholar
  16. 16.
    Benz, R., P. Lauger, and K. Janko. Transport kinetics of hydrophobic ions in lipid bilayer membranes: Charge-pulse relaxation studies. Biochem. Biophys. Acta. 455:701–720, 1976.PubMedCrossRefGoogle Scholar
  17. 17.
    Billheimer, J.T. and J.L. Gaylor. Effect of lipid composition on the transfer of sterols mediated by non-specific lipid transfer protein (sterol carrier protein2). Biochem. Biophys. Acta Lipid. Metab. 1046:136–143, 1990.CrossRefGoogle Scholar
  18. 18.
    Blatter, L.A. and W.G. Wier. Intracellular diffusion, binding, and compartmentalization of the fluorescent calcium indicators indo-1 and fura-2. Biophys. J. 58:1491–1499, 1990.PubMedCrossRefGoogle Scholar
  19. 19.
    Brodersen, R. Bilirubin. Solubility and interaction with albumin and phospholipid. J. Biol. Chem. 254:2364–2369, 1979.PubMedGoogle Scholar
  20. 20.
    Brodersen, R. Binding of bilirubin to albumin. CRC Crit. Rev. Clin. Lab. Sci. 11:305–399, 1980.PubMedCrossRefGoogle Scholar
  21. 21.
    Brodersen, R. and J. Theilgaard. Bilirubin colloid formation in neutral aqueous solution. Scand. J. Clin, Lab. Invest. 24:395–398, 1969.CrossRefGoogle Scholar
  22. 22.
    Brodersen, R., H. Vorum, E. Skriver, and A.O. Pedersen. Serum albumin binding of palmitate and stearate. Multiple binding theory for insoluble ligands. Eur. J. Biochem. 182:19–25, 1989.PubMedCrossRefGoogle Scholar
  23. 23.
    Bronner, F. Intestinal calcium transport: the cellular pathway. Miner Electrolyte Metab. 16:94–100, 1990.PubMedGoogle Scholar
  24. 24.
    Bronner, F., D. Pansu, and W.D. Stein. An analysis of intestinal calcium transport across the rat intestine. Am. J. Physiol. 250:G561–G569, 1986.PubMedGoogle Scholar
  25. 25.
    Catalá, A. Interaction of fatty acids, acyl-CoA derivatives and retinoids with microsomal membranes: Effect of cytosolic proteins. Mol. Cell. Biochem. 120:89–94, 1993.PubMedCrossRefGoogle Scholar
  26. 26.
    Chary, S.R. and R.K. Jain. Direct measurement of interstitial convection and diffusion of albumin in normal and neoplastic tissues by fluorescence photobleaching. Proc. Natl. Acad. Sci. USA 86:5385–5389, 1989.PubMedCrossRefGoogle Scholar
  27. 27.
    Cheng, K.H. Quantitation of non-Einstein diffusion behavior of water in biological tissues by proton MR diffusion imaging: Synthetic image calculations. Magn. Reson. Imaging 11:569–583, 1993.PubMedCrossRefGoogle Scholar
  28. 28.
    Claret, M. and J.L. Mazet. Ionic fluxes and permeabilities of cell membranes in rat liver. J. Physiol. (Lond). 223:279–295, 1972.Google Scholar
  29. 29.
    Clegg, J.S. Properties and metabolism of the aqueous cytoplasm and its boundaries. Am. J. Physiol. 246:R133–R151, 1984.PubMedGoogle Scholar
  30. 30.
    Cooper, R., N. Noy, and D. Zakim. A physical-chemical model for cellular uptake of fatty acids: prediction of intracellular pool sizes. Biochemistry 26:5890–5896, 1987.PubMedCrossRefGoogle Scholar
  31. 31.
    Crank, J. The Mathematics of Diffusion, 2nd ed. New York: Oxford University Press, 1989, pp. 326–337.Google Scholar
  32. 32.
    Crawford, J.M. and J.L. Gollan. Transcellular transport of organic anions in hepatocytes: Still a long way to go. Hepatology 14:192–197, 1991.PubMedCrossRefGoogle Scholar
  33. 33.
    Crawford, J.M. and J.L. Gollan. Hepatocellular transport of bilirubin: The role of membranes and microtubules. In: Hepatic Transport and Bile Secretion: Physiology and Pathophysiology, edited by N. Tavoloni and P.D. Berk. New York: Raven Press, 1993, pp. 447–466.Google Scholar
  34. 34.
    Cyr, J.L. and S.T. Brady. Molecular motors in axonal transport. Cellular and molecular biology of kinesin. Mol. Neurohiol. 6:137–155, 1992.CrossRefGoogle Scholar
  35. 35.
    Daniels, C., N. Noy, and D. Zakim. Rates of hydration of fatty acids bound to unilamellar vesicles of phosphatidylcholine or to albumin. Biochemistry 24:3286–3292, 1985.PubMedCrossRefGoogle Scholar
  36. 36.
    Dwyer, J.D. and V.A. Bloomfield. Brownian dynamics simulations of probe and selfdiffusion in concentrated protein and DNA solutions. Biophys. J. 65:1810–1816, 1993.PubMedCrossRefGoogle Scholar
  37. 37.
    Endow, S.A. The emerging kinesin family of microtubule motor proteins. Trends Biochem. Sci. 16:221–225, 1991.PubMedCrossRefGoogle Scholar
  38. 38.
    Erlinger, S. Role of intracellular organelles in the hepatic transport of bile acids. Biomed. Pharmacother. 44:409–416, 1990.PubMedCrossRefGoogle Scholar
  39. 39.
    Erlinger, S. Intracellular events in bile acid transport by the liver. In: Hepatic Transport and Bile Secretion: Physiology and Pathophysiology, edited by N. Tavoloni and P.D. Berk. New York: Raven Press, 1993, pp. 467–476.Google Scholar
  40. 40.
    Feher, J.J., C.S. Fullmer, and R.H. Wasserman. Role of facilitated diffusion of calcium by calbindin in intestinal calcium absorption. Am. J. Physiol. 262:C517–C526, 1992.PubMedGoogle Scholar
  41. 41.
    Fulton, A. How crowded is the cytoplasm? Cell 30:375–378, 1985.Google Scholar
  42. 42.
    Gaigalas, A.K., J.B. Hubbard, M. McCurley, and S. Woo. Diffusion of bovine serum albumin in aqueous solutions. J. Phys. Chem. 96:2355–2359, 1992.CrossRefGoogle Scholar
  43. 43.
    Gershon, N.D., K.R. Porter, and B.L. Trus. The cytoplasmic matrix: its volume and surface area and the diffusion of molecules through it. Proc. Natl. Acad. Sci. USA 82:5030–5034, 1985.PubMedCrossRefGoogle Scholar
  44. 44.
    Glatz, J.F. and G.J. Van der Vusse. Intracellular transport of lipids. Mol. Cell. Biochem. 88:37–44, 1989.PubMedCrossRefGoogle Scholar
  45. 45.
    Glatz, J.F.C. and G.J. Van der Vusse. Cellular fatty acid-binding proteins: Current concepts and future directions. Mol. Cell. Biochem. 98:237–251, 1990.PubMedGoogle Scholar
  46. 46.
    Goresky, C.A. Uptake in the liver: The nature of the process. Can. J. Physiol. Pharmacol. 21:65–101, 1980.Google Scholar
  47. 47.
    Goresky, C.A., W. Stremmel, C.P. Rose, S. Guirguis, A.J. Schwab, H.E. Diede, and E. Ibrihim. The capillary transport system for free fatty acids in the heart. Circ. Res. 74:1015–1026, 1994.PubMedGoogle Scholar
  48. 48.
    Groebe, K. and G. Thews. Role of geometry and anisotropic diffusion for modeling PO2 profiles in working red muscle. Respir. Physiol. 79:255–278, 1990.PubMedCrossRefGoogle Scholar
  49. 49.
    Groebe, K. and G. Thews. Calculated intra-and extracellular PO2 gradients in heavily working red muscle. Am. J. Physiol. 259:H84–H92, 1990.PubMedGoogle Scholar
  50. 50.
    Groebe, K. and G. Thews. Basic mechanisms of diffusive and diffusion-related oxygen transport in biological systems: A review. Adv. Exp. Med. Biol. 317:21–33, 1992.PubMedGoogle Scholar
  51. 51.
    Hayakawa, T., O. Cheng, A. Ma, and J.L. Boyer. Taurocholate stimulates transcytotic vesicular pathways labeled by horseradish peroxidase in the isolated perfused rat liver. Gastroenterology 99:216–228, 1990.PubMedGoogle Scholar
  52. 52.
    Hebert, S.C., J.A. Schafer, and T.E. Andreoli. The effects of antidiuretic hormone (ADH) on solute and water transport in the mammalian nephron. J. Membr. Biol. 58:1–19, 1981.PubMedCrossRefGoogle Scholar
  53. 53.
    Luxon, B.A., D.C. Holly, M.T. Milliano, and R.A. Weisiger. Sex differences in membrane and intracellular hepatic transport of palmitate support a balanced uptake mechanism. Am. J. Physiol. (in press), 1998.Google Scholar
  54. 54.
    Hou, L., F. Lanni, and K. Luby-Phelps. Tracer diffusion in F-actin and Ficoll mixtures. Toward a model for cytoplasm. Biophys. J. 58:31–43, 1990.PubMedCrossRefGoogle Scholar
  55. 55.
    Huet, P.M., C.A. Goresky, J.P. Villeneuve, D. Marleau, and J.O. Lough. Assessment of liver microcirculation in human cirrhosis. J. Clin. Invest. 70:1234–1244, 1982.PubMedCrossRefGoogle Scholar
  56. 56.
    Häussinger, D., N. Saha, C. Hallbrucker, F. Lang, and W. Gerok. Involvement of microtubules in the swelling-induced stimulation of transcellular taurocholate transport in perfused rat liver. Biochem. J. 291:355–360, 1993.PubMedGoogle Scholar
  57. 57.
    Irving, M., J. Maylie, N.L. Sizto, and W.K. Chandler. Intracellular diffusion in the presence of mobile buffers. Application to proton movement in muscle. Biophys. J. 57:717–721, 1990.PubMedCrossRefGoogle Scholar
  58. 58.
    Jacobson, K., Z. Derzko, E.S. Wu, Y. Hou, and G. Poste. Measurement of the lateral mobility of cell surface components in single, living cells by fluorescence recovery after photobleaching. J. Supramol. Struct. 5:565–576, 1976.PubMedCrossRefGoogle Scholar
  59. 59.
    Jacobson, K. and J. Wojcieszyn. The translational mobility of substances within the cytoplasmic matrix. Proc. Natl. Acad. Sci. USA 81:6747–6751, 1984.PubMedCrossRefGoogle Scholar
  60. 60.
    Jacobson, K. and J. Wojcieszyn. The translational mobility of substances within the cytoplasmic matrix. Proc. Natl Acad. Sci. USA 81:6747–6751, 1984.PubMedCrossRefGoogle Scholar
  61. 61.
    Jans, D.A., R. Peters, P. Jans, and F. Fahrenholz. Vasopressin V2-receptor mobile fraction and ligand-dependent adenylate cyclase activity are directly correlated in LLC-PK1 renal epithelial cells. J. Cell. Biol. 114:53–60, 1991.PubMedCrossRefGoogle Scholar
  62. 62.
    Jones, D.P., T.Y. Aw, and A.H. Sillau. Defining the resistance to oxygen transfer in tissue hypoxia. Experientia 46:1180–1185, 1990.PubMedCrossRefGoogle Scholar
  63. 63.
    Jürgens, K.D., T. Peters, and G. Gros. A method to measure the diffusion coefficient of myoglobin in intact skeletal muscle cells. Adv. Exp. Med. Biol. 277:137–143, 1990.PubMedGoogle Scholar
  64. 64.
    Kao, H.P, J.R. Abney, and A.S. Verkman. Determinants of the translational mobility of a small solute in cell cytoplasm. J. Cell. Biol. 120:175–184, 1993.PubMedCrossRefGoogle Scholar
  65. 65.
    Kaplowitz, N. Physiological significance of glutathione S-transferases. Am. J. Physiol. 239:G439–G444, 1980.PubMedGoogle Scholar
  66. 66.
    Keiding, S., P. Ott, and L. Bass. Enhancement of unbound clearance of ICG by plasma proteins, demonstrated in human subjects and interpreted without assumption of facilitating structures. J. Hepatol. 19:327–344, 1993.PubMedCrossRefGoogle Scholar
  67. 67.
    Kimmich, R., T. Gneiting, K. Kotitschke, and G. Schnur. Fluctuations, exchange processes, and water diffusion in aqueous protein systems. A study of bovine serum albumin by diverse NMR techniques. Biophys. J. 58:1183–1197, 1990.PubMedCrossRefGoogle Scholar
  68. 68.
    Kolega, J. and D.L. Taylor. Gradients in the concentration and assembly of myosin II in living fibroblasts during locomotion and fiber transport. Mol. Biol. Cell. 4:819–836, 1993.PubMedGoogle Scholar
  69. 69.
    Kragh-Hansen, U. Structure and ligand binding properties of human serum albumin. Dan. Med. J. 37:57–84, 1990.Google Scholar
  70. 70.
    Kuchel, P.W. and B.E. Chapman. Translational diffusion of hemoglobin in human erythrocytes and hemolysates. J. Magn. Reson. 94:574–580, 1991.Google Scholar
  71. 71.
    Kuwahara, M., L.B. Shi, F. Marumo, and A.S. Verkman. Transcellular water flow modulates water channel exocytosis and endocytosis in kidney collecting tubule. J. Clin. Invest. 88:423–429, 1991.PubMedCrossRefGoogle Scholar
  72. 72.
    Lake, J.R., V. Licko, R.W. Van Dyke, and B.F. Scharschmidt. Biliary secretion of fluid-phase markers by the isolated perfused rat liver. Role of transcellular vesicular transport. J. Clin. Invest. 76:676–684, 1985.PubMedCrossRefGoogle Scholar
  73. 73.
    Latour, L.L., K. Svoboda, P.P. Mitra, and C.H. Sotak. Time-dependent diffusion of water in a biological model system. Proc. Natl. Acad. Sci. USA 91:1229–1233, 1994.PubMedCrossRefGoogle Scholar
  74. 74.
    Lenzen, R., F. Tarseti, R. Salvi, E. Schuler, R. Dembitzer, and N. Tavoloni. Physiology of canalicular bile formation. In: Hepatic Transport and Bile Secretion: Physiology and Pathophysiology, edited by N. Tavoloni and P.D. Berk. New York: Raven Press, 1993, pp. 539–552.Google Scholar
  75. 75.
    LeSage, G.D., W.E. Robertson, J.L. Phinizy, and A. Dominquez. Cytoplasmic and membrane-based diffusion of organic anions in hepatocyte couplets and isolated endoplasmic reticulum vesicles. Gastroenterology 102:A841 (abstract), 1992.Google Scholar
  76. 76.
    Lichter, M., G. Fleischner, R. Kirsch, J. Levi, K. Kamisaka, and I.M. Arias. Ligandin and Z protein in binding of thyroid hormones by the liver. Am. J. Physiol. 230:113–1155, 1976.Google Scholar
  77. 77.
    Liem, H.H., J.A. Grasso, S.H. Vincent, and U. Muller Eberhard. Protein-mediated efflux of heme from isolated rat liver mitochondria. Biochem. Biophys. Res. Commun. 167:528–534, 1990.PubMedCrossRefGoogle Scholar
  78. 78.
    Liscum, L. and N.K. Dahl. Intracellular cholesterol transport. J. Lipid. Res. 33:1239–1254, 1992.PubMedGoogle Scholar
  79. 79.
    Longsworth, L. Temperature dependence of diffusion in aqueous solutions. J. Phys. Chem. 58:770–773, 1954.CrossRefGoogle Scholar
  80. 80.
    Luby-Phelps, K., P.E. Castle, D.L. Taylor, and F. Lanni. Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3T3 cells. Proc. Natl. Acad. Sci. USA 84:4910–4913, 1987.PubMedCrossRefGoogle Scholar
  81. 81.
    Luby-Phelps, K., F. Lanni, and D.L. Taylor. The submicroscopic properties of cytoplasm as a determinant of cellular function. Ann. Rev. Biophys. Biophys. Chem. 17:369–396, 1988.CrossRefGoogle Scholar
  82. 82.
    Luby-Phelps, K., S. Mujumdar, R.B. Mujumdar, L.A. Ernst, W. Galbraith, and A.S. Waggoner. A novel fluorescence ratiometric method confirms the low solvent viscosity of the cytoplasm. Biophys. J. 65:236–242, 1993.PubMedCrossRefGoogle Scholar
  83. 83.
    Luby-Phelps, K. and D.L. Taylor. Subcellular compartmentalization by local differentiation of cytoplasmic structure. Cell. Motil. Cytoskel. 10:28–37, 1988.CrossRefGoogle Scholar
  84. 84.
    Luby-Phelps, K. and R.A. Weisiger. Role of cytoarchitecture in cytoplasmic transport. Comp. Biochem. Physiol. 115B:295–306, 1996.Google Scholar
  85. 85.
    Luxon, B.A. Inhibition of binding to fatty acid binding protein reduces the intracellular transport of a fatty acid analog: Further evidence for a transport function for FABP. Gastroenterology 104:A936 (abstract), 1993.Google Scholar
  86. 86.
    Luxon, B.A., R.R. Cavalieri, and R.A. Weisiger. A new method for measuring cytoplasmic transport: Application to 3,5,3′-triiodothyronine (T3). Clin. Res. 39:460A (abstract), 1991.Google Scholar
  87. 87.
    Luxon, B.A. and R.A. Weisiger. Cytoplasmic transport: A potentially rate-limiting step in the hepatic utilization of fatty acids. Hepatology 14:255A (abstract), 1991.Google Scholar
  88. 88.
    Luxon, B.A. and R.A. Weisiger. Sex differences in cytoplasmic transport of a fatty acid analog: Evidence for a transport function for fatty acid binding protein (FABP). Hepatology 16:144A (abstract), 1992.Google Scholar
  89. 89.
    Luxon, B.A. and R.A. Weisiger. A new method for measuring cytoplasmic transport: Application to 3,5,3′-triiodothyronine (T3). Am. J. Physiol. 263:G733–G741, 1992.PubMedGoogle Scholar
  90. 90.
    Luxon, B.A. and R.A. Weisiger. Sex differences in intracellular fatty acid transport: Role of cytoplasmic binding proteins. Am. J. Physiol. 265:G831–G841, 1993.PubMedGoogle Scholar
  91. 91.
    Luxon, B.A. and R.A. Weisiger. Extending the multiple indicator dilution method to include slow cytoplasmic diffusion. Math. Biosci. 113:211–230, 1993.PubMedCrossRefGoogle Scholar
  92. 92.
    Marks, D.L., N.F. LaRusso, and M.A. McNiven. Isolation of the microtubule-vesicle motor kinesin from rat liver: Selective inhibition by cholestatic bile acids. Gastroenterology 108:824–833, 1995.PubMedCrossRefGoogle Scholar
  93. 93.
    Mastro, A.M., M.A. Babich, W.D. Taylor, and A.D. Keith. Diffusion of a small molecule in the cytoplasm of mammalian cells. Proc. Natl. Acad. Sci. USA 81:3414–3418, 1984.PubMedCrossRefGoogle Scholar
  94. 94.
    Matarese, V., R.L. Stone, D.W. Waggoner, and D.A. Bernlohr. Intracellular fatty acid trafficking and the role of cytosolic lipid binding proteins. Prog. Lipid. Res. 28:245–272, 1990.CrossRefGoogle Scholar
  95. 95.
    McGinnis, W. and M. Kuziora. The molecular architects of body design. Sci. Am. 270:58–61, 64–66, 1994.PubMedCrossRefGoogle Scholar
  96. 96.
    Meijer, D.K.F. and G.M.M. Groothuis. Hepatic transport of drugs and proteins. In: Oxford Textbook of Clinical Hepatology, edited by N. McIntyre, J.P. Benhamou, J. Bircher, M. Rizzetto, and J. Rodes. New York: Oxford University Press, 1991, pp. 40–78.Google Scholar
  97. 97.
    Mendel, C.M., R.A. Weisiger, A.L. Jones, and R.R. Cavalieri. Thyroid hormone-binding proteins in plasma facilitate uniform distribution of thyroxine within tissues: A perfused rat liver study. Endocrinology 120:1742–1749, 1987.PubMedCrossRefGoogle Scholar
  98. 98.
    Meuwissen, J.A.T.P. and K.P.M. Heirwegh. Binding proteins in plasma and liver cytosol, and transport of bilirubin. In Transport by Proteins, edited by G. Blauer and H. Sund. New York: W. de Gruyter, 1978, pp. 387–403.Google Scholar
  99. 99.
    Meuwissen, J.A.T.P. and K.P.M. Heirwegh. Aspects of bilirubin transport. In: Bilirubin, Volume II, edited by K.P.M. Heirwegh and S.B. Brown. Boca Raton, FL: CRC Press, 1982, pp. 39–83.Google Scholar
  100. 100.
    Meuwissen, J.A.T.P., B. Ketterer, and K.P.M. Heirwegh. Role of soluble binding proteins in overall hepatic transport of bilirubin. In Chemistry and Physiology of Bile Pigments, edited by P. Berk and N. Berlin. Bethesda, MD: National Institutes of Health, 1977, pp. 323–337.Google Scholar
  101. 101.
    Morre, D.J., W.D. Merritt, and C.A. Lembi. Connections between mitochondria and endoplasmic reticulum in rat liver and onion stem. Protoplasma 73:43–49, 1971.PubMedCrossRefGoogle Scholar
  102. 102.
    Murkerjee, P. Dimerization of anions of long-chain fatty acids in aqueous solutions and the hydrophobic properties of the acids. J. Phys. Chem. 69:2821–2827, 1965.CrossRefGoogle Scholar
  103. 103.
    Nathanson, M.H. Cellular and subcellular calcium signaling in gastrointestinal epithelium. Gastroenterology 106:1349–1364, 1994.PubMedGoogle Scholar
  104. 104.
    Nathanson, M.H., M.S. Moyer, A.D. Burgstahler, A.M. O’Carroll, M.J. Brownstein, and S.J. Lolait. Mechanisms of subcellular cytosolic Ca2+ signaling evoked by stimulation of the vasopressin Vla receptor. J. Biol. Chem. 267:23282–23289, 1992.PubMedGoogle Scholar
  105. 105.
    Noy, N. and Z.-J. Xu. Interactions of retinol with binding proteins: Implications for the mechanism of uptake by cells. Biochemistry 29:3878–3883, 1990.PubMedCrossRefGoogle Scholar
  106. 106.
    Noy, N. and D. Zakim. Physical chemical basis for the uptake of organic compounds by cells. In: Hepatic Transport and Bile Secretion: Physiology and Pathophysiology, edited by N. Tavoloni and P.D. Berk. New York: Raven Press, 1993, pp. 313–336.Google Scholar
  107. 107.
    Ockner, R.K., D.A. Burnett, N. Lysenko, and J.A. Manning. Sex differences in long chain fatty acid utilization and fatty acid binding protein concentration in rat liver. J. Clin. Invest. 64:172–181, 1979.PubMedCrossRefGoogle Scholar
  108. 108.
    Ott, P., S. Keiding, and L. Bass. Intrinsic hepatic clearance of indocyanine green in the pig: Dependence on plasma protein concentration. Eur. J. Clin. Invest. 22:347–357, 1992.PubMedCrossRefGoogle Scholar
  109. 109.
    Ott, P., S. Keiding, A.H. Johnsen, and L. Bass. Hepatic removal of two fractions of indocyanine green after bolus injection in anesthetized pigs. Am. J. Physiol. Gastrointest. Liver. Physiol. 266:G1108–G1122, 1994.Google Scholar
  110. 110.
    Periasamy, N., H.P Kao, K. Fushimi, and A.S. Verkman. Organic osmolytes increase cytoplasmic viscosity in kidney cells. Am. J. Physiol. Cell Physiol. 263: C901–C907, 1992.Google Scholar
  111. 111.
    Peters, R. Nucleo-cytoplasmic flux and intracellular mobility in single hepatocytes measured by fluorescence microphotolysis. EMBO J. 3:1831–1836, 1984.PubMedGoogle Scholar
  112. 112.
    Peters, T., Jr. Serum albumin. Adv. Prot. Chem. 37:161–245, 1985.CrossRefGoogle Scholar
  113. 113.
    Phillips, M.C., W.J. Johnson, and G.H. Rothblat. Mechanisms and consequences of cellular cholesterol exchange and transfer. Biochim. Biophys. Acta 906:223–276, 1987.PubMedGoogle Scholar
  114. 114.
    Pond, S.M., C.K.C. Davis, M.A. Bogoyevitch, R.A. Gordon, R.A. Weisiger, and L. Bass. Uptake of palmitate by hepatocyte suspensions: Facilitation by albumin? Am. J. Physiol. 262:G883–G894, 1992.Google Scholar
  115. 115.
    Pond, S.M., R.A. Gordon, Z.-Y. Wu, R.A. Weisiger, and L. Bass. Effects of gender and pregnancy on hepatocellular uptake of palmitic acid: Facilitation by albumin. Am. J. Physiol. Gastromtest. Liver. Physiol. 267:G656–G662, 1994.Google Scholar
  116. 116.
    Potter, B.J. and P.D. Berk. Liver plasma membrane fatty acid binding protein. In: Hepatic Transport and Bile Secretion: Physiology and Pathophysiology, edited by N. Tavoloni and P.D. Berk. New York: Raven Press, 1993, pp. 253–268.Google Scholar
  117. 117.
    Reichen, J., B. Egger, N. Ohara, T.B. Zeltner, T. Zysset, and A. Zimmermann. Determinants of hepatic function in liver cirrhosis in the rat Multivariate analysis. J. Clin. Invest. 82:2069–2076, 1988.PubMedCrossRefGoogle Scholar
  118. 118.
    Rivory, L.P. Probing hepatic structure and function with the multiple indicator dilution technique. Ph.D. Thesis. University of Queensland, St. Lucia, Australia, 1991.Google Scholar
  119. 119.
    Rivory, L.P., M.S. Roberts, and S.M. Pond. Axial tissue diffusion can account for the disparity between current models of hepatic elimination for lipophilic drugs. J. Pharmacokinei. Biopharm. 20:19–61, 1992.CrossRefGoogle Scholar
  120. 120.
    Roda, A., A. Minutello, M.A. Angellotti, and A. Fini. Bile acid structure-activity relationship: Evaluation of bile acid lipophilicity using 1-octanol/water partition coefficient and reverse phase HPLC J. Lipid Res. 31:1433–1443, 1990.PubMedGoogle Scholar
  121. 121.
    Rojkind, M. Extracellular matrix. In: The Liver: Biology and Pathobiology, 2nd ed., edited by I.M. Arias, W.B. Jakoby, H. Popper, D. Schachter, and D.A. Shafritz. New York: Raven Press, 1988, pp. 707–716.Google Scholar
  122. 122.
    Rorschach, H.E., C. Lin, and C.F. Hazlewood. Diffusion of water in biological tissues. Scanning Micros. 5:S1–S10, 1991.Google Scholar
  123. 123.
    Rosner, W. Plasma steroid-binding proteins. Endocrinol. Metabol. Clin. North Am. 20:697–720, 1991.Google Scholar
  124. 124.
    Rothman, J.E. Mechanisms of intracellular protein transport. Nature 372:55–63, 1994.PubMedCrossRefGoogle Scholar
  125. 125.
    Ruifrok, P.G. and D.K. Meijer. Sodium ion-coupled uptake of taurocholate by ratliver plasma membrane vesicles. Liver 2:28–34, 1982.PubMedGoogle Scholar
  126. 126.
    Scallen, T.J., A. Pastuszyn, B.J. Noland, R. Chanderbhan, A. Kharroubi, and G.V. Vahouny. Sterol carrier and lipid transfer proteins. Chem. Phys. Lipids 38:239–261, 1985.PubMedCrossRefGoogle Scholar
  127. 127.
    Scharschmidt, B.F., J.R. Lake, E.L. Renner, V. Licko, and R.W. Van Dyke. Fluid phase endocytosis by cultured rat hepatocytes and perfused rat liver: Implications for plasma membrane turnover and vesicular trafficking of fluid phase markers. Proc. Natl. Acad. Sci. USA 83:9488–9492, 1986.PubMedCrossRefGoogle Scholar
  128. 128.
    Schwab, A.J. and C.A. Goresky. Hepatic uptake of protein-bound ligands: Effect of an unstirred Disse space. Am. J. Physiol. 270:G869–G880, 1996.PubMedGoogle Scholar
  129. 129.
    Scow, R.O., E.J. Blanchette-Mackie, M.G. Wetzel, and A. Reinila. Lipid transport in tissue by lateral movement in cell membranes. In: The Adipocyte and Obesity: Cellular and Molecular Mechanisms, edited by A. Angel and C.H. Hollenberg. New York: Raven Press, 1983, pp. 165–169.Google Scholar
  130. 130.
    Shah, J.C. Analysis of permeation data: Evaluation of the lag time method. Int. J. Pharm. 90:161–169, 1993.CrossRefGoogle Scholar
  131. 131.
    Simion, F.R., B. Fleischer, and S. Fleischer. Two distinct mechanisms for taurocholate uptake in subcellular fractions from rat liver. J. Biol. Chem. 259:10814–10822, 1984.PubMedGoogle Scholar
  132. 132.
    Sleight, R.G. Intracellular lipid transport in eukaryotes. Ann. Rev. Physiol. 49:193–208, 1987.CrossRefGoogle Scholar
  133. 133.
    Smith, A. and W.T. Morgan. Hemopexin-mediated heme transport to the liver. Evidence for a heme-binding protein in liver plasma membranes. J. Biol. Chem. 260:8325–8329, 1985.PubMedGoogle Scholar
  134. 134.
    Spener, F., T. Borchers, and M. Mukherjea. On the role of fatty acid binding proteins in fatty acid transport and metabolism. FEBS. Lett. 244:1–5, 1989.PubMedCrossRefGoogle Scholar
  135. 135.
    Stein, W.D. Concepts of mediated transport. In: Membrane Transport, edited by S.L. Bonting and J.J. de Pont. Amsterdam: Elsevier Press, 1981, pp. 123–157.Google Scholar
  136. 136.
    Stein, W.D. Facilitated diffusion of calcium across the rat intestinal epithelial cell. J. Nutr. 122:651–656, 1992.PubMedGoogle Scholar
  137. 137.
    Stewart, J.M., W.R. Driedzic, and J.A. Berkelaar. Fatty-acid-binding protein facilitates the diffusion of oleate in a model cytosol system. Biochem. J. 275:569–573, 1991.PubMedGoogle Scholar
  138. 138.
    Weisiger, R.A. When is a carrier not a membrane carrier? The cytoplasmic transport of amphipathic molecules. Hepatology 24:1288–1295, 1996.PubMedCrossRefGoogle Scholar
  139. 139.
    Stolz, A., H. Takikawa, M. Ookhtens, and N. Kaplowitz. The role of cytoplasmic proteins in hepatic bile acid transport. Ann. Rev. Physiol. 51:161–176, 1989.CrossRefGoogle Scholar
  140. 140.
    Stremmel, W., C. Tiribelli, and K. Vyska. The multiplicity of sinusoidal membrane carrier systems of organic anions. In: Hepatic Transport and Bile Secretion: Physiology and Pathophysiology, edited by N. Tavoloni and P.D. Berk. New York: Raven Press, 1993, pp. 225–234.Google Scholar
  141. 141.
    Stump, D.D., R.M. Nunes, D. Sorrentino, L.M. Isola, and P.D. Berk. Characterization of two distinct components of hepatic oleate uptake. Hepatology 16:865A, 1992.CrossRefGoogle Scholar
  142. 142.
    Stump, D.D., R.M. Nunes, D. Sorrentino, L.M. Isola, and P.D. Berk. Characteristics of oleate binding to liver plasma membranes and its uptake by isolated hepatocytes. J. Hepatol. 16:304–315, 1992.PubMedCrossRefGoogle Scholar
  143. 143.
    Suchy, F.J., W.F. Balistreri, J. Hung, P. Miller, and S.A. Garfield. Intracellular bile acid transport in rat liver as visualized by electron microscope autoradiography using a bile acid analogue. Am. J. Physiol. 245:G681–G689, 1983.PubMedGoogle Scholar
  144. 144.
    Sweetser, D.A., R.O. Heuckeroth, and J.I. Gordon. The metabolic significance of mammalian fatty-acid-binding proteins: Abundant proteins in search of a function. Ann. Rev. Nutr. 7:337–359, 1987.CrossRefGoogle Scholar
  145. 145.
    Takikawa, H., J.C. Fernandez-Checa, J. Kuhlenkamp, A. Stolz, M. Ookhtens, and N. Kaplowitz. Effect of indomethacin on the uptake, metabolism and excretion of 3-ox-ocholic acid: Studies in isolated hepatocytes and perfused rat liver. Biochim. Biophys. Acta 1084:247–250, 1991.PubMedGoogle Scholar
  146. 146.
    Tipping, E. and B. Ketterer. The influence of soluble binding proteins on lipophile transport and metabolism in hepatocytes. Biochem. J. 195:441–452, 1981.PubMedGoogle Scholar
  147. 147.
    Tipping, E., B. Ketterer, and L. Christodoulides. Interactions of small molecules with phospholipid bilayers. Binding to egg phosphatidylcholine of some organic anions (bromosulphophthalein, oestrone sulphate, haem and bilirubin) that bind to ligandin and aminoazo-dye-binding protein A. Biochem. J. 180:327–337, 1979.PubMedGoogle Scholar
  148. 148.
    Tiribelli, C. Determinants in the hepatic uptake of organic anions. J. Hepatol. 14:385–390, 1992.PubMedCrossRefGoogle Scholar
  149. 149.
    Verkman, A.S., J.A. Dix, and J.L. Seifter. Water and urea transport in renal microvillus membrane vesicles. Am. J. Physiol. 248:F650–F655, 1985.PubMedGoogle Scholar
  150. 150.
    Voelker, D.R. Organelle biogenesis and intracellular lipid transport in eukaryotes. Microbiol. Rev. 55:543–560, 1991.PubMedGoogle Scholar
  151. 151.
    Von Dippe, P. and D. Levy. Characterization of the bile acid transport system in normal and transformed hepatocytes. Photoaffinity labeling of the taurocholate carrier protein. J. Biol. Chem. 258:8896–8901, 1983.Google Scholar
  152. 152.
    Vork, M.M., J.F. Glatz, and G.J. Van der Vusse. On the mechanism of long chain fatty acid transport in cardiomyocytes as facilitated by cytoplasmic fatty acid-binding protein. J. Theor. Biol. 160:207–222, 1993.PubMedCrossRefGoogle Scholar
  153. 153.
    Weibel, E.R., W. Stäubli, H.R. Gnägi, and F.A. Hess. Correlated morphometric and biochemical studies on the liver cell. J. Cell. Biol. 68:91, 1969.Google Scholar
  154. 154.
    Weisiger, R.A. Dissociation from albumin: A potentially rate-limiting step in the clearance of substances by the liver. Proc. Natl. Acad. Sci. USA 82:1563–1567, 1985.PubMedCrossRefGoogle Scholar
  155. 155.
    Weisiger, R.A. The role of albumin binding in hepatic organic anion transport. In: Hepatic Transport and Bile Secretion: Physiology and Pathophysiology, edited by N. Tavoloni and P.D. Berk. New York: Raven Press, 1993, pp. 171–196.Google Scholar
  156. 156.
    Wang, Y.-L., F. Lanni, P. McNeil, B. Ware, and L. Taylor. Mobility of cytoplasmic and membrane-associated actin in living cells. Proc. Natl. Acad. Sci. USA 79:4660–4664, 1982.PubMedCrossRefGoogle Scholar
  157. 157.
    Kreis, T., B. Geiger, and J. Schlessinger. Mobility of microinjected rhodamine actin within living chicken gizzard cells determined by fluorescence photobleaching recovery. Cell 29:835–845, 1982.PubMedCrossRefGoogle Scholar
  158. 158.
    Salmon, E., W. Saxton, R. Leslie, M. Karow, and J. Mcintosh. Measurements of spindle microtubule dynamics by fluorescence redistribution after photobleaching. J. Cell. Biol. 7:253A–2531 (abstract), 1983.Google Scholar
  159. 159.
    Weisiger, R.A. Cytoplasmic transport of lipids: Role of binding proteins. Comp. Biochem. Physiol. 115B:319–331, 1996.Google Scholar
  160. 160.
    Weisiger, R.A., S.M. Pond, and L. Bass. Albumin enhances unidirectional fluxes of fatty acid across a lipid-water interface: Theory and experiments. Am. J. Physiol. 257:G904–G916, 1989.PubMedGoogle Scholar
  161. 161.
    Weisiger, R.A., S.M. Pond, and L. Bass. Hepatic uptake of protein-bound ligands: Extended sinusoidal perfusion model. Am. J. Physiol. 261:G872–G884, 1991.PubMedGoogle Scholar
  162. 162.
    Westergaard, H. and J.M. Dietschy. The mechanism whereby bile acid micelles increase the rate of fatty acid and cholesterol uptake into the intestinal mucosal cell. J. Clin. Invest. 58:97–108, 1976.PubMedCrossRefGoogle Scholar
  163. 163.
    Wheatley, D.N., A. Redfern, and R.P. Johnson. Heat-induced disturbances of intracellular movement and the consistency of the aqueous cytoplasm in HeLa S-3 cells: A laser-Doppler and proton NMR study. Physiol. Chem. Phys. Med. NMR 23:199–216, 1991.PubMedGoogle Scholar
  164. 164.
    Wieland, T., M. Nassal, W. Kramer, G. Fricker, U. Bickel, and G. Kurz. Identity of hepatic membrane transport systems for bile salts, phalloidin, and antamanide by photoaffinity labeling. Proc. Natl. Acad. Sci. USA 81:5232–5236, 1984.PubMedCrossRefGoogle Scholar
  165. 165.
    Wisse, E., R.B. De Zanger, K. Charrels, P. Van Der Smissen, and R.S. McCuskey. The liver sieve: Considerations concerning the structure and function of endothelial fenestrae, the sinusoidal wall and the space of Disse. Hepatology 5:683–692, 1985.PubMedCrossRefGoogle Scholar
  166. 166.
    Wojcieszyn, J.W., R.A. Schlegel, E.S. Wu, and K.A. Jacobson. Diffusion of injected macromolecules within the cytoplasm of living cells. Proc. Natl. Acad. Sci. USA 78:4407–4410, 1981.PubMedCrossRefGoogle Scholar
  167. 167.
    Yguerabide, J., J.A. Schmidt, and E.E. Yguerabide. Lateral mobility in membranes as detected by fluorescence recovery after photobleaching. Biophys. J. 40:69–75, 1982.PubMedCrossRefGoogle Scholar
  168. 168.
    Yoshida, H., M. Yusin, I. Ren, J. Kuhlenkamp, T. Hirano, A. Stolz, and N. Kaplowitz. Identification, purification, and immunochemical characterization of a tocopherol-binding protein in rat liver cytosol. J. Lipid Res. 33:343–350, 1992.PubMedGoogle Scholar
  169. 169.
    Zilversmit, D.B. Lipid transfer proteins. J. Lipid Res. 25:1563–1569, 1984.PubMedGoogle Scholar
  170. 170.
    Zimniak, P. and Y.C. Awasthi. ATP-dependent transport systems for organic anions. Hepatology 17:330–339, 1993.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1998

Authors and Affiliations

  • Richard A. Weisiger

There are no affiliations available

Personalised recommendations