Advertisement

A Generalized Mathematical Theory of the Multiple-Indicator Dilution Method

  • Andreas J. Schwab

Abstract

Tracer techniques have proven to be invaluable for the quantitative assessment of metabolic and biological transport processes. The multiple-indicator dilution technique as a special form of a tracer method is particularly suitable for the study of relatively rapid processes occurring in intact organs. In the previous chapters, the principles and some important applications of the multiple-indicator dilution technique have been addressed. In this chapter, a more detailed analysis of the mathematical foundations of this technique will be presented. This allows us to put this technique in a more general framework of tracer analysis, yielding a systematic approach to finding numerical solutions that apply in a more general way, whereas the analytical solutions presented in Chapter 13 are applicable only in simpler cases.

Keywords

Transfer Coefficient Laplace Transformation Indicator Dilution Compartmental System Laguerre Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bassingthwaighte, J. B., C. Y. Wang, and I. S. Chan. Blood-tissue exchange via transport and transformation by capillary endothelial cells. Circ. Res. 65:997–1020, 1989.PubMedGoogle Scholar
  2. Bracht, A., A. Kelmer-Bracht, A. Schwab, and R. Scholz. Transport of inorganic anions in perfused rat liver. Eur. J. Biochem. 114:471–479, 1981.PubMedCrossRefGoogle Scholar
  3. Bracht, A., A. J. Schwab, and R. Scholz. Untersuchungen von Fluβgeschwindigkeiten in der isolierten perfundierten Rattenleber durch Pulsmarkierung mit radioaktiven Substraten und mathematischer Analyse der Auswaschkinetiken. Hoppe-Seyle’s Z. Physiol. Chem. 361:357–377, 1980.CrossRefGoogle Scholar
  4. Clogh, A. V., D. Cui, J. H. Linehan, G. S. Krenz, C. A. Dawson, and M. B. Maron. Modelfree nunerical deconvolution of recirculating indicator concentration curves. J. Appl. Physiol. 74:1444–1453, 1993.Google Scholar
  5. Cobelli, C. and J. J. DiStefano. Parameter and structural identifiability concepts and ambiguities—A critical review and analysis. Am. J. Physiol. 239:R7–R24, 1980.PubMedGoogle Scholar
  6. Dyson, R. D. and I. Isenberg. Analysis of exponential curves by a method of moments, with special attention to sedimentation equilibrium and fluorescence decay. Biochemistry 10:3233–3241, 1971.PubMedCrossRefGoogle Scholar
  7. Forker, E. L. and Z.-C. Cai. Mathematical modeling as strategy for understanding hepatic transport of organic solutes. In: Hepatic Transport and Bile Secretion: Physiology and Pathophysiology, edited by N. Tavaloni and P. D. Berk. New York: Raven Press, pp. 41–53, 1993.Google Scholar
  8. Goresky, C. A. A linear method for determining liver sinusoidal and extravascular volumes. Am. J. Physiol. 204:626–640, 1963.PubMedGoogle Scholar
  9. Goresky, C. A., W. H. Ziegler, and G. G. Bach. Capillary exchange modeling: Barrierlimited and flow-limited distribution. Circ. Res. 27:739–764, 1970.PubMedGoogle Scholar
  10. Goresky, C. A., G. G. Bach, and B. E. Nadeau. On the uptake of material by intact liver. The transport and net removal of galactose. J. Clin. Invest. 52:975–990, 1973.PubMedCrossRefGoogle Scholar
  11. Goresky, C. A., G. G. Bach, and B. E. Nadeau. Red cell carriage of label. Its limiting effect on the exchange of materials in the liver. Circ. Res. 36:328–351, 1975.PubMedGoogle Scholar
  12. Goresky, C. A., G. G. Bach, and A. J. Schwab. Distributed-in-space product formation in vivo: Linear kinetics. Am. J. Physiol. 264:H2007–H2028, 1993a.PubMedGoogle Scholar
  13. Goresky, C. A., G. G. Bach, and A. J. Schwab. Distributed-in-space product formation in vivo: Enzymic kinetics. Am. J. Physiol. 264:H2029–H2050, 1993b.PubMedGoogle Scholar
  14. Jacquez, J. A. Compartmental Analysis in Biology and Medicine, 3rd Edition. Ann Arbor, MI: BioMedware, 1996.Google Scholar
  15. Pang, K. S., F. Barker, A. Simard, A. J. Schwab, and C. A. Goresky. Sulfation of acetaminophen by the perfused rat liver: The effect of red blood cell carriage. Hepatology 22:267–282, 1995.PubMedCrossRefGoogle Scholar
  16. Ratna, S., M. Chiba, L. Bandyopadhyay, and K. S. Pang. Futile cycling between 4-meth-ylumbelliferone and its conjugates in perfused rat liver. Hepatology 17:838–853, 1993.PubMedCrossRefGoogle Scholar
  17. Salcudean, S. E., P. Bélanger, C. A. Goresky, and C. P. Rose. The use of Laguerre functions for parameter identification in a distributed biological system. IEEE Transact. Biomed. Eng. 28:767–775, 1981.CrossRefGoogle Scholar
  18. Sangren, W. C. and C. W. Sheppard. A mathematical derivation of the exchange of a labeled substance between a liquid flowing in a vessel and an external compartment. Bull. Mathem. Biophys. 15:387–394, 1953.CrossRefGoogle Scholar
  19. Schwab, A. J. Extension of the theory of the multiple indicator dilution technique to metabolic systems with an arbitrary number of rate constants. Math. Biosc. 71:57–79, 1984.CrossRefGoogle Scholar
  20. Schwab, A. J., F. M. Zwiebel, A. Bracht, and R. Scholz. Transport and metabolism of L-lactate in perfused rat liver studied by multiple pulse labelling. In: Carrier-mediated transport from blood to tissue, edited by D. M. Yudilevich and G. E. Mann, London: Longman, pp. 339–344, 1985.Google Scholar
  21. Schwab, A. J., A. Bracht, and R. Scholz. Investigation of rapid metabolic reactions in whole organs by multiple pulse labelling. In: Mathematics in biology and medicine, edited by V. Capasso, E. Grosso, and S. L. Paveri-Fontana (Lecture Notes in Biomathematics 57), Berlin; New York: Springer-Verlag, pp. 348–353, 1985.Google Scholar
  22. Schwab, A. J., A. Bracht, and R. Scholz. Transport of D-lactate in perfused rat liver. Eur. J. Biochem. 102:537–547, 1979.PubMedCrossRefGoogle Scholar
  23. Weiss, M. and M. S. Roberts. Tissue distribution kinetics as determinant of transit time dispersion of drugs in organs: Application of a stochastic model to the rat hindlimb. J. Pharmacokin. Biopharm. 24:173–196, 1996.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1998

Authors and Affiliations

  • Andreas J. Schwab

There are no affiliations available

Personalised recommendations