Probing the Structure and Function of the Liver with the Multiple-Indicator Dilution Technique

  • K. Sandy Pang
  • Carl A. Goresky
  • Andreas J. Schwab
  • Wanping Geng


The liver is the most important drug eliminating organ that is capable of both metabolism and excretion. The efficiency with which the liver removes a drug is often expressed as the hepatic drug clearance, or the volume of perfusing fluid cleared of its contained drug per unit time. Clearance is affected by the hepatic blood flow rate, the binding to vascular proteins, transport across the sinusoidal membrane, and the K m and V max of the metabolic and excretory pathways (for reviews, see Gillette and Pang, 1977; Pang and Xu, 1988; Pang et al., 1991a; Goresky et al., 1993a, 1993b). The liver is a highly specialized and complex organ (Rappaport, 1958, 1980; Novikoff, 1959; Miller et al., 1979; de Leeue and Knook, 1984; Gooding et al., 1978; Jungerman and Katz 1982), and its attendant heterogeneities—capillary transit times (Goresky, 1963; Sherman et al., 1990; Almond and Wheatley, 1992; Pang et al., 1994a), transport (Burger et al., 1989; McFarlane et al., 1990), enzyme zonation (Baron et al., 1982; Ullrich et al., 1984; Knapp et al., 1988; Thurman et al., 1987; Pang et al., 1983; Pang and Terrell, 1981a), acinar biliary excretion (Gumucio et al., 1978; Boyer et al., 1979), cosubstrate abundance (Smith et al., 1979; Murray et al., 1986; Chiba and Pang, 1995), and intracellular binding (Braakman et al., 1989; Bass et al., 1989)—must be viewed in an integrative fashion in order to accurately relate the intrahepatic events involved in drug and metabolite processing (Pang and Stillwell, 1983; Goresky and Groom, 1984; Goresky et al., 1994; Pang and Xu, 1988). The overall removal process is highly dependent on these variables as well as the concentration of drug entering the liver.


Portal Venous Retrograde Perfusion Water Space Permeability Surface Area Product Acetaminophen Sulfation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Almond, N. E. and A. M. Wheatley. Measurement of hepatic perfusion in rats by laser Doppler flowmetry. Am. J. Physiol. 262(Gastrointest. Liver Physiol. 25):G203–G209, 1992.PubMedGoogle Scholar
  2. Baron, J., R. A. Redick, and F. P. Guengerich. Effect of 3-methylcholanthrene, β-naphtho-flavone, and phenobarbital on the 3-methyl-cholanthrene inducible isozyme of cytochrome P-450 within centrilobular, midzonal, and periportal hepatocytes. J. Biol. Chem. 257:953–957, 1982.PubMedGoogle Scholar
  3. Barnhart, J. R. and R. Clarenburg. Factors determining the clearance of bilirubin in perfused rat liver. Am. J. Physiol. 225:497–508, 1973.PubMedGoogle Scholar
  4. Bass, L. Saturation kinetics in hepatic drug removal: A statistical approach to functional heterogeneity. Am. J. Physiol. 244:G583–583G589, 1983.Google Scholar
  5. Bass, L. Heterogeneity within observed regions: Physiologic basis and effects on estimation of rates of biodynamic processes. Circulation 72(Suppl IV):47–52, 1985.Google Scholar
  6. Bass, L. and P. J. Robinson. Effects of capillary heterogeneity on rates of steady state uptake of substances by the intact liver. Microvasc. Res. 22:43–57, 1981.PubMedCrossRefGoogle Scholar
  7. Bass, N. M., M. E. Barker, J. A. Manning, A. L. Jones, and R. K. Ockner. Acinar heterogeneity of fatty acid binding protein expression in livers of male, female, and clofibrate-treated rats. Hepatology 9:12–21, 1989.PubMedCrossRefGoogle Scholar
  8. Bayne, W. F., F. T. Tao, G. Rogers, L. C. Chu and F. Theeuwes. Time course and disposition of methazolamide in human plasma and red blood cells. J. Pharm. Sci. 70:75–81, 1981.PubMedCrossRefGoogle Scholar
  9. Boyer, J. L., E. Elias, and T. J. Layden. The paracellular pathway and bile formation. Yale J. Biol. Med. 52:61–67, 1979.PubMedGoogle Scholar
  10. Braakman, I., G. M. M. Groothuis, and D. K. F. Meijer. Zonal compartmentation of perfused rat liver: Plasma reappearance of rhodamine B explained. J. Exp. Pharmacol. Ther. 239:869–873. 1989.Google Scholar
  11. Burger, H. J., R. Gebhardt, C. Mayer, and D. Mecke. Different capacities for amino acid transport in periportal and perivenous hepatocytes isolated by digitonin/collagenase perfusion. Hepatology 9:22–28, 1989.PubMedCrossRefGoogle Scholar
  12. Chiba, M. and K. S. Pang. Effect of protein binding on 4-methylumbelliferyl sulfate desulfation kinetics in perfused rat liver. J. Pharmacol. Exp. Ther. 266:492–499, 1993.PubMedGoogle Scholar
  13. Chiba, M. and K. S., K. Poon, J. Hollands and K. S. Pang. Glycine conjugation of benzoic acid and its acinar localization in perfused rat liver. J. Pharmacol. Exp. Ther. 268:419–416, 1994.Google Scholar
  14. Chiba, M. and K. S. Pang. Glutathione depletion kinetics with acetaminophen: A simulation study. Drug Metab. Dispos. 23:622–630, 1995.PubMedGoogle Scholar
  15. Conway, J. G., F. C. Kauffman, T. Tsukada, and R. G. Thurman. Glucuronidation of 7-hydroxycoumarin in periportal and pericentral regions of the liver lobule. Mol. Pharmacol. 25:487–493, 1984.PubMedGoogle Scholar
  16. Conway, J. G., F. C. Kauffman, and R. G. Thurman. Effect of glucose on 7-hydroxycoumarin glucuronide production in periportal and pericentral regions of the liver lobule. Biochem. J. 226:749–756, 1985.PubMedGoogle Scholar
  17. Conway, J. G., F C. Kauffman, T. Tsukada, and R. G. Thurman. Glucuronidation of 7-hydroxycoumarin in periportal and pericentral regions of the lobule in livers from untreated and 3-methyl-cholanthrene-treated rats. Mol. Pharmacol. 33:111–119, 1987.Google Scholar
  18. DeBaun, J. R., J. Y. R. Smith, E. C. Miller and J. A. Miller. Reactivity in vivo of the carcinogen N-hydroxy-2-acetylaminofluorene: Increase by sulfate ion. Science 167: 184–186, 1971.CrossRefGoogle Scholar
  19. de Lannoy, I. A. M. and K. S. Pang. A commentary. The presence of diffusional barriers on drug and metabolite kinetics. Enalaprilat as a generated versus preformed metabolite. Drug Metab. Dispos. 14:513–520, 1986.Google Scholar
  20. de Lannoy, I. A. M. and K. S. Pang. Diffusional barriers on drug and metabolite kinetics. Drug Metab. Dispos. 15:51–58, 1987.PubMedGoogle Scholar
  21. de Leeue, A. M. and D. L. Knook. The ultrastructure of sinusoidal liver cells in the intact rat at various ages. In: Pharmacological, Morphological and Physiological Aspects of Aging, edited by C. F. A. van Bezooijen.) Rijswik: Eurage, pp. 91–96, 1984.Google Scholar
  22. Fleischner, G., D. K. F. Meijer, W. G. Levine, Z. Gatmaitan, R. Gluck, and I. M. Arias. Effect of hypolipidemic drugs, nafenopin and Clofibrate, on the concentration of ligandin and Z protein in rat liver. Biochem. Biophys. Res. Commun. 67:1401–1407, 1975.PubMedCrossRefGoogle Scholar
  23. Froment, G. F. and K. B. Bischoff. Elements of reaction kinetics. In: Chemical Reactor Analysis and Design. New York: John Wiley and Sons, p. 10, 1976.Google Scholar
  24. Gärtner, U., R. J. Stockert, W. G. Levine, and A. W. Wolkoff. Effect of nafenopin on the uptake of bilirubin and sulfobromophthalein by the isolated perfused rat liver. Gastroenterology 83:1163–1169, 1982.PubMedGoogle Scholar
  25. Geng, W. P., A. J. Schwab, C. A. Goresky, and K. S. Pang. Carrier-mediated uptake and excretion of bromosulfophthalein-glutathione conjugate in perfused rat liver. A multiple indicator dilution study. Hepatology 22:1108–1207, 1995a.CrossRefGoogle Scholar
  26. Geng, W.-P., K. Poon, and K. S. Pang. Entry and removal of carrier-mediated vs. flow-limited substrates: A simulation study. J. Pharmacokinet. Biopharm. 23:347–378, 1995b.PubMedCrossRefGoogle Scholar
  27. Gillette, J. R. Overview of drug-protein binding. Proc. N.Y. Acad. Sci. (Washington DC) 226:6–17, 1973.CrossRefGoogle Scholar
  28. Gillette, J. R. and K. S. Pang. Theoretical aspects of pharmacokinetic drug interactions. Clin. Pharmacol. Ther. 22:623–639, 1977.PubMedGoogle Scholar
  29. Gonzalez-Fernandez, J. M. and A. E. Atta. Maximal substrate transport in capillary networks. Microvasc. Res. 5:180–198, 1973.PubMedCrossRefGoogle Scholar
  30. Gooding, P. E., J. Chayen, B. Sawyer, and T. F. Slater. Cytochrome P-450 distribution in rat liver and the effect of sodium phenobarbitone administration. Chem. Biol. Interact. 20:299–310, 1978.PubMedCrossRefGoogle Scholar
  31. Goresky, C. A. A linear method for determining liver sinusoidal and extravascular volumes. Am. J. Physiol. 204:626–640, 1963.PubMedGoogle Scholar
  32. Goresky, C. A. and A. C. Groom. Microcirculatory events in the liver and the spleen. In: Handbook of Physiology—The Cardiovascular System IV, edited by E. M. Renkin and C. C. Michel. Washington, DC: Am. Physiol. Society, pp. 689–780, 1984.Google Scholar
  33. Goresky, C. A., G. G. Bach, and E. Nadeau. On the uptake of materials by the intact liver: The transport and net removal of galactose. J. Clin. Invest. 52:991–1009, 1973.PubMedCrossRefGoogle Scholar
  34. Goresky, C. A., G. G. Bach, and E. Nadeau. Red cell carriage of label. Its limiting effect on the exchange of materials in the liver. Circ. Res. 36:328–351, 1975.PubMedGoogle Scholar
  35. Goresky, C. A., D. S. Daly, D. Mishkin, and I. M. Arias. Uptake of labeled palmitate by the intact liver: Role of intracellular binding sites. Am. J. Physiol. 234 (Endocrinol. Metab. Gastrointest. Physiol. 3):E542–E553, 1978.PubMedGoogle Scholar
  36. Goresky, C. A., E. R. Gordon, and G. G. Bach. Uptake of monohydric alcohols by liver: Demonstration of a shared enzymic space. Am. J. Physiol. 244 (Gastrointest. Liver Physiol. 7):G198–G214, 1983.PubMedGoogle Scholar
  37. Goresky, C. A., A. J. Schwab, and C. P. Rose. Xenon handling in the liver: Red cell capacity effect. Circ. Res. 63:767–778, 1988.PubMedGoogle Scholar
  38. Goresky, C. A., K. S. Pang, A. J. Schwab, F. Barker III, W. F. Cherry, and G. G. Bach. Uptake of a protein bound polar compound, acetaminophen sulfate, by perfused rat liver. Hepatology 16:173–190, 1992.PubMedCrossRefGoogle Scholar
  39. Goresky, C. A., G. G. Bach, and A. J. Schwab. Distributed-in-space product formation in vivo: Linear kinetics. Am. J. Physiol. 264(Heart Circ. Physiol. 33):H2007–H2028, 1993a.PubMedGoogle Scholar
  40. Goresky, C. A., G. G. Bach, and A. J. Schwab. Distributed-in-space product formation in vivo: Enzyme kinetics. Am. J. Physiol. 264(Heart Circ. Physiol. 33):H2029–H2050, 1993b.PubMedGoogle Scholar
  41. Goresky, C. A., A. J. Schwab, and K. S. Pang. Flow, cell entry, metabolic disposal and product formation in the liver. In: The Liver. Biology and Pathobiology, 3rd edition, edited by I. A. Arias, J. Boyer, N. Fausto, W. Jakoby, D. Schachter, and D. Shafritz. New York: Raven Press, Chapter 58, pp. 1107–1141, 1994.Google Scholar
  42. Goresky, C. A., G. G. Bach, A. J. Schwab, and K. S. Pang. Liver cell entry in vivo and enzymic conversion. In: Whole Organ Approach to Cellular Metabolism: Capillary Permeation, Cellular Transport and Reaction Kinetics, edited by J. Bassingthwaighte, C. A. Goresky, and J. N. Linehan. New York: Springer-Verlag, 1997.Google Scholar
  43. Grausz, H. and R. Schmid. Reciprocal relation between plasma albumin level and hepatic sulfobromophthalein removal. New Engl. J. Med. 284:1403–1404, 1971.PubMedCrossRefGoogle Scholar
  44. Gumucio, J. J., C. Balabaud, D. L. Miller, L. F. Demason, H. D. Appleman, T. J. Stoecker, and D. R. Franzblau. Bile secretion and liver cell heterogeneity in the rat. J. Lab. Clin. Med. 91:350–362, 1978.PubMedGoogle Scholar
  45. Gumucio, J. J., D. L. Miller, M. D. Krauss, and C. C. Zanolli. Transport of fluorescent compounds into hepatocytes and the resultant zonal labeling of the hepatic acinus in the rat. Gastroenterology 80:639–646, 1981.PubMedGoogle Scholar
  46. Gumucio, D. L., J. J. Gumucio, J. A. P. Wilson, C. Cutter, M. Krauss, R. Caldwell, and E. Chen. Albumin influences sulfobromophthalein transport by hepatocytes of each acinar zone. Am. J. Physiol. 246:G86–G95, 1984.PubMedGoogle Scholar
  47. Jones, A. L., G. T. Hreadek, R. H. Renston, K. Y. Wong, G. Karlagnais, and G. Paum gartner. Autoradiographic evidence for hepatic lobular concentration gradient of bile acid derivative. Am. J. Physiol. 238 (Gastrointest. Liver Physiol. 1):G233–G237, 1980.PubMedGoogle Scholar
  48. Jungerman, K. and N. Katz. Functional hepatocellular heterogeneity. Hepatology 2:385–395, 1982.CrossRefGoogle Scholar
  49. Kitamura, T., P. Jansen, C. Hardenbrook, Y. Kamimoto, Z. Gatmaitan, and I. M. Arias. Defective ATP-dependent bile canalicular transport of organic anions in mutant (TR-1) rats with conjugated hyperbilirubinemia. Proc. Natl. Acad. Sci. U.S.A. 87:3557–3561, 1990.PubMedCrossRefGoogle Scholar
  50. Knapp, S. A., M. D. Green, T. R. Tephly, and J. Baron. Immunohistochemical demonstration of isozyme-and strain-specific differences in the intralobular localizations and distributions of UDP-glucuronosyltransferases in livers of untreated rats. Mol. Pharmacol. 33:14–21, 1988.PubMedGoogle Scholar
  51. Lee, H.-J. and W. L. Chiou. Erythrocytes as barriers for drug elimination in the isolated perfused rat liver. I. Doxorubicin. Pharm. Res. 10:833–839, 1989a.CrossRefGoogle Scholar
  52. Lee, H.-J. and W. L. Chiou. Erythrocytes as barriers for drug elimination in the isolated perfused rat liver. II. Propranolol. Pharm. Res. 10:840–843, 1989b.CrossRefGoogle Scholar
  53. Lemaire, M. and J. P. Tillement. Role of lipoproteins and erythrocytes in the in vivo binding and distribution of cyclosporin A in the blood. J. Pharm. Pharmacol. 34:715–718, 1982.PubMedCrossRefGoogle Scholar
  54. Levenspiel, O. Design for multiple reactions. In: Chemical Reaction Engineering, 2nd edition. New York: John Wiley and Sons Inc., pp. 182–185, 1970.Google Scholar
  55. Levy, G. and A. Yacobi. Effect of protein binding on elimination of warfarin. J. Pharm. Sci. 63:805–806, 1974.PubMedCrossRefGoogle Scholar
  56. Lin, J. H., T.-H. Lin, and H. Cheung. Uptake and stereoselective binding of the enantiomers of MK-927, a potent carbonic anhydrase inhibitor by human erythrocytes in vitro. Pharm. Res. 9:339–344, 1992.PubMedCrossRefGoogle Scholar
  57. McFarlane, B. M., J. Spios, C. D. Gove, I. G. McFarlane, and R. Williams. Antibodies against the hepatic asialoglycoprotein receptor perfused in situ preferentially attach to periportal liver cells in the rat. Hepatology 11:408–415, 1990.PubMedCrossRefGoogle Scholar
  58. Meier, P. J. and B. Stieger. Canalicular membrane adenosine triphosphate-dependent transport systems. Prog. Liver Dis. 11:27–44, 1993.PubMedGoogle Scholar
  59. Meijer, D. K. F. Current concepts on hepatic transport of drugs. J. Hepatol. 4:259–268, 1987.PubMedCrossRefGoogle Scholar
  60. Miller, D. L., C. S. Zanolli, and J. J. Gumucio. Quantitative morphology of the sinusoids in the hepatic acinus. Gastroenterology 76:965–969, 1979.PubMedGoogle Scholar
  61. Miyauchi, S., Y. Sugiyama, T. Iga, and M. Hanano. Membrane-limited transport of the conjugative metabolites of 4-methylumbelliferone in rats. J. Pharm. Sci. 77:688–692, 1988.PubMedCrossRefGoogle Scholar
  62. Morris, M. E. and K. S. Pang. Competition between two enzymes for substrate removal in liver: Modulating effects of competitive pathways. J. Pharmacokinet. Biopharm. 15:473–496, 1987.PubMedCrossRefGoogle Scholar
  63. Morris, M. E., V. Yuen, and K. S. Pang. Competing pathways in drug metabolism. II. Competing pathways in drug metabolism. Enzymic systems for 2-and 5-sulfoconjugation are distributed anterior to 5-glucuronidation in the metabolism of gentisamide by the perfused rat liver. J. Pharmacokinet. Biopharm. 16:633–656, 1988a.PubMedCrossRefGoogle Scholar
  64. Morris, M. E., V. Yuen, B. K. Tang, and K. S. Pang. Competing pathways in drug metabolism. I. Effect of varying input concentrations on gentisamide conjugation in the once-through in situ perfused rat liver preparation. J. Pharmacol Exp. Ther. 245:614–652, 1988b.PubMedGoogle Scholar
  65. Motta, P., M. Muto, and T. Fujita. The Liver: An Atlas of Scanning Electron Microscopy. New York: Igaku Shoin, plate 7.5, p. 14, 1978.Google Scholar
  66. Murray, G. I., M. D. Burke, and S. W. B. Even. Glutathione localization by a novel o-phthaladehyde histofluorescence method. Histochem. J. 18:434–440, 1986.PubMedCrossRefGoogle Scholar
  67. Nathanson, M. H. and J. L. Boyer. Special article. Mechanisms and regulation of bile secretion. Hepatology 14:551–566, 1991.PubMedCrossRefGoogle Scholar
  68. Novikoff, A. B. Cell heterogeneity within the hepatic lobule of the rat (staining reactions). J. Histochem. Cytochem. 7:240–244, 1959.PubMedCrossRefGoogle Scholar
  69. Pang, K. S. and J. R. Gillette. Kinetics of metabolite formation and elimination in the perfused rat liver preparation: Differences between the elimination of preformed acetaminophen and acetaminophen formed from phenacetin. J. Pharmacol. Exp. Ther. 207:178–194, 1978.PubMedGoogle Scholar
  70. Pang, K. S. and G. J. Mulder. A commentary: Effect of flow on formation of metabolites. Drug Metab. Dispos. 18:270–275, 1990.PubMedGoogle Scholar
  71. Pang, K. S. and M. Rowland. Hepatic clearance of drugs. I. Theoretical consideration of a “well-stirred” model and a “parallel tube” model. Influence of hepatic blood flow, plasma and blood cells binding, and the hepatocellular activity on hepatic drug clearance. J. Pharmacokinet. Biopharm. 5:625–653, 1977.PubMedCrossRefGoogle Scholar
  72. Pang, K. S. and R. N. Stillwell. An understanding of the role of enzymic localization of the liver on metabolite kinetics: A computer simulation. J. Pharmacokinet. Biopharm. 11:451–468, 1983.PubMedCrossRefGoogle Scholar
  73. Pang, K. S. and J. A. Terrell. Retrograde perfusion to probe the heterogeneous distribution of hepatic drug metabolizing enzymes in rats. J. Pharmacol. Exp. Ther. 216:339–346, 1981a.PubMedGoogle Scholar
  74. Pang, K. S. and J. A. Terrell. Conjugation kinetics of acetaminophen by the perfused liver preparation. Biochem. Pharmacol. 38:1959–1965, 1981b.CrossRefGoogle Scholar
  75. Pang, K. S. and X. Xu. Drug metabolism factors in drug discovery and design. In: Pharmacokinetics: Regulatory-Industrial-Academic Perspectives, edited by P. G. Welling and F.L.-S. Tse. New York: Marcel Dekker Inc., pp. 383–447, 1988.Google Scholar
  76. Pang, K. S., H. Koster, I. C. M. Halsema, E. Scholtens, G. J. Mulder, and R. N. Stillwell. Normal and retrograde perfusion to probe the zonal distribution of sulfation and glucuronidation activities of harmol in the perfused rat liver preparation. J. Pharmacol. Exp. Ther. 224:647–653, 1983.PubMedGoogle Scholar
  77. Pang, K. S., W. F Cherry, J. A. Terrell, and E. H. Ulm. Disposition of enalapril and its diacid metabolite, enalaprilat, in a perfused rat liver preparation. Presence of a diffusional barrier into hepatocytes. Drug Metab. Dispos. 12:309–312, 1984.PubMedGoogle Scholar
  78. Pang, K. S., X. Xu, M. E. Morris, and V. Yuen. Kinetic modeling of conjugations in liver. Fed. Proc. 46:2439–2441, 1987.Google Scholar
  79. Pang, K. S., W. F Cherry, J. Accaputo, A. J. Schwab, and C. A. Goresky. Combined hepatic arterial-portal venous or hepatic venous flows once-through the in situ perfused rat liver to probe the abundance of drug metabolizing activities. Perihepatic venous O-deethylation activity for phenacetin and periportal sulfation activity for acetaminophen. J. Pharmacol. Exp. Ther. 247:690–700, 1988a.PubMedGoogle Scholar
  80. Pang, K. S., W. F. Lee, W. F. Cherry, V. Yuen, J. Accaputo, A. J. Schwab, and C. A. Goresky. Effects of perfusate flow rate on measured blood volume, Disse space, intracellular water spaces, and drug extraction in the perfused rat liver preparation: Characterization by the technique of multiple indicator dilution. J. Pharmacokinet. Biopharm. 16:595–605, 1988b.PubMedCrossRefGoogle Scholar
  81. Pang, K. S., F. Barker III, A. J. Schwab, and C. A. Goresky. 14C-urea and 58Co-EDTA as reference indicators in hepatic multiple indicator dilution studies. Am. J. Physiol. 259(Gastrintest. Liver Physiol. 22):G32–G40, 1990.PubMedGoogle Scholar
  82. Pang, K. S., A. J. Schwab, and C. A. Goresky. Deterministic factors underlying drug and metabolite clearances in rat liver perfusion studies. In: Perfused Liver: Clinical and Basic Applications, edited by F. Ballet and R. G. Thurman. London: Les Editions INSERM and John Libbey Eurotext, pp. 259–302, 1991a.Google Scholar
  83. Pang, K. S., N. Xu, and C. A. Goresky. D2O as a substitute for 3H2O as a reference indicator in liver multiple indicator dilution studies. Am. J. Physiol. 261 (Gastrointest. Liver Physiol. 24):G929–G936, 1991b.PubMedGoogle Scholar
  84. Pang, K. S., W. F. Cherry, F. Barker, III, and C. A. Goresky. Esterases for enalapril hydrolysis is concentrated in the perihepatic venous region of the rat liver. J. Pharmacol. Exp. Ther. 257:294–301, 1991c.PubMedGoogle Scholar
  85. Pang, K. S., I. A. Sherman, A. J. Schwab, W. Geng, F. Barker III, J. A. Dlugosz, G. Cuerrier, and C. A. Goresky. Role of the hepatic artery in the metabolism of phenacetin and acetaminophen: An intravital microscopic and multiple indicator dilution study in perfused rat liver. Hepatology 20:672–683, 1994a.PubMedGoogle Scholar
  86. Pang, K. S., F. Barker III, A. J. Schwab, and C. A. Goresky. Demonstration of rapid entry and a cellular binding space for salicylamide in perfused rat liver: A multiple indicator dilution study. J. Pharmacol. Exp. Ther. 270:285–295, 1994b.PubMedGoogle Scholar
  87. Pang, K. S., F. Barker III, A. J. Schwab, and C. A. Goresky. Sulfation of acetaminophen by the perfused rat liver: The effect of red blood cell carnage. Hepatology 22:267–282, 1995.PubMedCrossRefGoogle Scholar
  88. Perl, W. and F. P. Chinard. A convection-diffusion model of indicator transport through an organ. Circ. Res. 22:273–298, 1968.PubMedGoogle Scholar
  89. Piekoszewski, W., F S. Chow, and W. J. Jusko. Disposition of tacrolimus (FK506) in rabbits. Role of red cell binding in hepatic clearance. Drug Metab. Dispos. 21:690–698, 1993.PubMedGoogle Scholar
  90. Rappaport, A. M. The structural and functional unit in the human liver (liver acinus). Anat. Rec. 130:673–689, 1958.PubMedCrossRefGoogle Scholar
  91. Rappaport, A. M. Hepatic blood flow: Morphologic aspects and physiologic regulation. In: Liver and Biliary Tract Physiology. I International Review of Physiology, Vol. 21, edited by N. B. Javitt. Baltimore, MD: University Park Press, pp. 1–63, 1980.Google Scholar
  92. Ratna, S., M. Chiba, L. Bandyopadhyay, and K. S. Pang. Futile cycling between 4-meth-ylumbelliferone and its conjugates in perfused rat liver. Hepatology 17:839–853, 1993.CrossRefGoogle Scholar
  93. Redick, J. A., W. B. Jakoby, and J. Baron. Immunohistochemical localization of glutathione-S-transferase in livers of untreated rats. J. Biol. Chem. 257:15200–15203, 1982.PubMedGoogle Scholar
  94. Roberts, M. S. and M. Rowland. A dispersion model of hepatic elimination: 3. Application to metabolite formation and elimination kinetics. J. Pharmacokinet. Biopharm. 14:289–308, 1986.PubMedCrossRefGoogle Scholar
  95. Sato, H., Y. Sugiyama, S. Miyauchi, Y. Sawada, T. Iga, and M. Hanano. A simulation study on the effect of a uniform diffusional barrier across hepatocytes on drug metabolism by evenly or unevenly distributed uni-enzyme in the liver. J. Pharm. Sci. 75:3–8, 1986.PubMedCrossRefGoogle Scholar
  96. Scharschmidt, B. F. and R. Schmid. The micellar sink. J. Clin. Invest. 62:1122–1131, 1978.PubMedCrossRefGoogle Scholar
  97. Schwab, A. J. Extension of the theory of the multiple indicator dilution technique to variable systems with an arbitrary number of rate constants. Math. Biosci. 71:57–79, 1984.CrossRefGoogle Scholar
  98. Schwab, A. J. and C. A. Goresky. Hepatic uptake of protein-bound ligands: effect of an unstirred Disse space. Am. J. Physiol. 270(Gastrointest. Liver Physiol. 33):G869–G880, 1996.PubMedGoogle Scholar
  99. Schwab, A. J., F. M. Zwiebel, A. Bracht, and R. Scholz. Transport and metabolism of L-lactate in perfused rat liver studied by multiple pulse labelling. In: Carrier-Mediated Transport from Blood to Tissue, edited by D. M. Yudilevich and G. E. Mann. New York: Longman, pp. 339–344, 1985.Google Scholar
  100. Schwab, A. J., F. Barker III, C. A. Goresky, and K. S. Pang. Transfer of enalaprilat across rat liver cell membranes is barrier-limited. Am. J. Physiol. 258(Gastrointest. Liver Physiol. 21):G461–G475, 1990.PubMedGoogle Scholar
  101. Sherman, I. A., S. C. Pappas, and M. M. Fisher. Hepatic microvascular changes associated with liver fibrosis and cirrhosis Am. J. Physiol. 258(Heart Circ. Physiol. 27):H460–H465, 1990.PubMedGoogle Scholar
  102. Sherman, I. A., F. Barker III, J. Dugloz, F. M. Sadeghi and K. S. Pang. Dynamics of arterial and portal flow interactions in perfused rat liver: An intravital microscopic study. Am. J. Physiol. 271(Gastrointest. Liver Physiol. 34):G201–G210, 1996.PubMedGoogle Scholar
  103. Smith, M. T., N. Loveridege, E. D. Wills, and J. Chayen. The distribution of glutathione content in the rat liver lobule Biochem. J. 182:103–108, 1979.PubMedGoogle Scholar
  104. Sorrentino, D., R. B. Robinson, C.-L. Kiang, and P. D. Berk. At physiological albumin/ oleate concentrations oleate uptake by isolated hepatocytes, cardiac myocytes, and adipocytes is a saturable function of the unbound oleate concentration. Uptake kinetics are consistent with the conventional theory. J. Clin. Invest. 84:1325–1333, 1989a.PubMedCrossRefGoogle Scholar
  105. Sorrentino, D., R. A. Weisiger, N. M. Bass, and V. Licko. The hepatocellular transport of sulfobromophthalein-glutathione by Clofibrate treated-perfused rat liver. Lipids 24:438–442, 1989b.PubMedCrossRefGoogle Scholar
  106. St-Pierre, M. V., A. J. Schwab, C. A. Goresky, W.-F. Lee, and K. S. Pang. The multiple indicator dilution technique for characterization of normal and retrograde perfusions in the once-through rat liver preparation. Hepatology 9:285–296, 1989.PubMedCrossRefGoogle Scholar
  107. St-Pierre, M. V., P. I. Lee, and K. S. Pang. A comparative investigation of hepatic clearance models: predictions of metabolite formation and elimination. J. Pharmacokinet. Biopharm. 20:105–145, 1992.PubMedCrossRefGoogle Scholar
  108. Theilmann, L., Y. R. Stollman, I. M. Arias, and A. W. Wolkoff. Does Z-protein have a role in transport of bilirubin and bromosulfophthalein by isolated perfused rat liver? Hepatology 5:923–926, 1985.Google Scholar
  109. Thurman, R. G., F. C. Kauffman, and K. Jungermann. Regulation of Hepatic Metabolism. Intra-and Intercellular Compartmentation. New York: Plenum Press, 1987.Google Scholar
  110. Ullrich, D., G. Fisher, N. Katz, and K. W. Bock. Intralobular distribution of UDP-glucurono syltransferase in livers from untreated, 3-methylcholanthrene-and phenobarbital-treated rats. Chem.-Biol. Interact. 48:181–190, 1984.PubMedCrossRefGoogle Scholar
  111. Wallace, S. M. and S. Riegelman. Uptake of acetazolamide by human erythrocytes in vitro. J. Pharm. Sci. 66:729–731, 1977.PubMedCrossRefGoogle Scholar
  112. Watanabe, Y, G. P. Püschel, A. Gardemann, and K. Jungermann. Presinusoidal and proximal intrasinusoidal confluence of hepatic artery and portal vein in rat liver: Functional evidence by orthograde and retrograde bivascular perfusion. Hepatology 19:1198–1207, 1994.PubMedCrossRefGoogle Scholar
  113. Weisiger, R. A. Dissociation from albumin: A potentially rate-limiting step in the clearance of substances. Proc. Natl. Acad. Sci. U.S.A. 82:1563–1567, 1985.PubMedCrossRefGoogle Scholar
  114. Weisiger, R. A., C. A. Mendel, and R. R. Cavalieri. The hepatic sinusoid is not well-stirred: Estimation of the degree of axial mixing by analysis of lobular concentration gradients formed during uptake of thyroxine by the perfused rat liver. J. Pharm. Sci. 75:233–237, 1986.PubMedCrossRefGoogle Scholar
  115. Weisiger, R. A., S. M. Pond, and L. Bass. Albumin enhances unidirectional fluxes of fatty acid across a lipid-water interface: theory and experiments. Am. J. Physiol. 251 (Gastrointest. Liver Physiol. 20):G904–G916, 1989.Google Scholar
  116. Weisiger, R. A., S. Pond, and L. Bass. Hepatic uptake of protein-bound ligands: Extended sinusoidal perfusion model. Am. J. Physiol. 261(Gastrointest. Liver Physiol. 24):G872–G884, 1991.PubMedGoogle Scholar
  117. Wilkinson, G. R. Clearance approaches in pharmacology. Pharmacol. Rev. 39:1–47, 1987.PubMedGoogle Scholar
  118. Winkler, W., S. Keiding, and N. Tygstrup. Clearance as a quantitative measure of structure and function. In: The liver: Quantitative Aspects of Structure and Function, edited by P. Paumgartner and R. Preisig. Basel: Karger, pp. 144–155, 1973.Google Scholar
  119. Wolkoff, A. W., C. A. Goresky, J. Sellin, S. Gatmaitan, and I. M. Arias. Role of ligandin in transfer of bilirubin from plasma into liver. Am. J. Physiol. 236:E638–G648, 1979.PubMedGoogle Scholar
  120. Xu, X. and K. S. Pang. Hepatic modeling of metabolite kinetics in sequential and parallel pathways: salicylamide and gentisamide metabolism in perfused rat liver. J. Pharmacokinet. Biopharm. 17:645–671, 1989.PubMedCrossRefGoogle Scholar
  121. Xu, X., B. K. Tang, and K. S. Pang. Sequential metabolism of salicylamide exclusively to gentisamide-5-glucuronide and not gentisamide sulfate conjugates in the single pass in situ perfused rat liver. J. Pharmacol. Exp. Ther. 253:965–973, 1990a.PubMedGoogle Scholar
  122. Xu, N., A. Chow, C. A. Goresky, and K. S. Pang. Effects of retrograde flow on measured blood volume, Disse space, intracellular water space, and drug extraction in the perfused rat liver: Characterization by the multiple indicator dilution technique. J. Pharmacol. Exp. Ther. 254:914–925, 1990b.PubMedGoogle Scholar
  123. Xu, X., P. Selick, and K. S. Pang. Effects of nonlinear protein binding and heterogeneity of drug metabolizing enzymes on hepatic drug removal. J. Pharmacokinet. Biopharm. 21:43–76, 1993.PubMedCrossRefGoogle Scholar
  124. Xu, X., A. J. Schwab, F. Barker III, C. A. Goresky, and K. S. Pang. Salicylamide sulfate cell entry in perfused rat liver: A multiple indicator dilution study. Hepatology 19:229–244, 1994.PubMedCrossRefGoogle Scholar
  125. Yamamoto, K., I. A. Sherman, M. J. Phillips, and M. M. Fisher. Three-dimensional observations of the hepatic arterial terminations in rat, hamster and human liver by scanning electron microscopy of microvascular casts. Hepatology 5:452–456, 1985.PubMedCrossRefGoogle Scholar
  126. Zhao, Y., C. A. W. Snel, G. J. Mulder, and K. S. Pang. Glutathione conjugation of bromosulfophthalein in perfused rat liver: Studies with the multiple indicator dilution technique. Drug Metab. Dispos. 21:1070–1078, 1993.PubMedGoogle Scholar
  127. Zierler, K. L. Equations for measuring blood flow by monitoring of radioisotopes. Circ. Res. 16:309–321, 1965.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1998

Authors and Affiliations

  • K. Sandy Pang
  • Carl A. Goresky
  • Andreas J. Schwab
  • Wanping Geng

There are no affiliations available

Personalised recommendations