Advertisement

Quantitative Assessment of Sites of Adenosine Production in the Heart

  • Andreas Deussen

Abstract

Adenosine, the dephosphorylation product of adenine nucleotide metabolism, has a multitude of physiological and pharmacological actions. Four important functions shall be exemplified for the heart.

Keywords

Adenine Nucleotide Adenosine Deaminase Adenosine Kinase Adenosine Concentration Adenosine Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, E. H., A. G. Prat, L. Gerweck, T. Seneveratne, R. J. Arceci, R. Kramer, G. Guidotti, and H. F. Cantiello. The multidrug resistance (mdrl ) gene product functions as an ATP channel. Proc. Natl. Acad. Sci. USA 90:312–316, 1993.PubMedCrossRefGoogle Scholar
  2. Bardenheuer, H. and J. Schrader. Supply-to-demand ratio for oxygen determines formation of adenosine by the heart. Am. J. Physiol. 250:H173–H180, 1986.PubMedGoogle Scholar
  3. Bassingthwaighte, J. B. and C. A. Gorsky. Modeling in the analysis of solute and water exchange in the microvasculature. In: Handbook of Physiology, Section 2: The Cardiovascular System, Vol. IV, Microcirculation, Part I edited by E. M. Renkin, C. C. Michel, and S. R. Geiger. Bethesda, MD: The American Physiological Society, pp. 549–626.Google Scholar
  4. Bassingthwaighte, J. B., I. S. Chan, and C. Y. Wang. Computationally efficient algorithms for capillary convection-permeation-diffusion models for blood tissue exchange. Ann. Biomed. Eng. 20:687–725, 1992.PubMedCrossRefGoogle Scholar
  5. Becker, B. F. and E. Gerlach. Uric acid, the major catabolite of cardiac adenine nucleotides and adenosine, originates in the coronary endothelium. In: Topics and Perspectives in Adenosine Research, edited by E. Gerlach and B. F. Becker. Heidelberg: Springer-Verlag, pp. 209–221, 1987.Google Scholar
  6. Belardinelli, L., J. Linden, and R. M. Berne. The cardiac effects of adenosine. Progr. Cardiovasc. Dis. 32:73–97, 1989.CrossRefGoogle Scholar
  7. Belloni, F. L., R. Rubio, and R. M. Berne. Intracellular adenosine in isolated rat liver cells. Pflügers Arch 400:106–108, 1984.PubMedCrossRefGoogle Scholar
  8. Berne, R. M. Cardiac nucleotides in hypoxia: Possible role in the regulation of coronary blood flow. Am. J. Physiol. 204:317–322, 1963.PubMedGoogle Scholar
  9. Berne, R. M. The role of adenosine in the regulation of coronary blood flow. Circ. Res. 47:807–813, 1980.PubMedGoogle Scholar
  10. Borchardt, R. T. and Y. S. Wu. Potential inhibitors of S-adenosylmethionine-dependent methyl-transferases: 3. Modification of the sugar portion of S-adenosylhomocysteine. J. Med. Chem. 18:300–304, 1975.PubMedCrossRefGoogle Scholar
  11. Borst, M. M. and J. Schrader. Adenine nucleotide release from isolated perfused guinea pig hearts and extracellular formation of adenosine. Circ. Res. 68:797–806, 1991.PubMedGoogle Scholar
  12. Borst, M. M., A. Deussen, and J. Schrader. S-Adenosylhomocysteine hydrolase activity in human myocardium. Cardiovasc. Res. 26:143–147, 1992.PubMedCrossRefGoogle Scholar
  13. Biinger, R., F. J. Haddy, A. Querengässer, and E. Gerlach. An isolated guinea pig heart preparation with in vivo like features. Pflügers Arch. 353:317–326, 1975a.CrossRefGoogle Scholar
  14. Bönger, R., F. J. Haddy, and E. Gerlach. Coronary responses to dilating substances and competitive inhibition by theophylline in the isolated perfused guinea pig heart. Pflügers Arch. 358:213–224, 1975b.CrossRefGoogle Scholar
  15. Clanachan, A. S., T. P. Heaton, and F. E. Parkinson. Drug interactions with nucleoside transport systems. In: Topics and Perspectives in Adenosine Research, edited by E. Gerlach and B. F. Becker. Heidelberg: Springer-Verlag, pp. 118–129, 1987.Google Scholar
  16. Clarke, B., E. Rowland, P. J. Barnes, J. Till, D. E. Ward, and E. A. Shinebourne. Rapid and safe termination of supraventricular tachycardia in children by adenosine. Lancet, February 7:299–301, 1987.CrossRefGoogle Scholar
  17. Clemo, H. F. and L. Belardinelli. Effect of adenosine on atrioventricular conduction. II: Modulation of atrioventricular node transmission by adenosine in hypoxic isolated guinea pig hearts. Circ. Res. 59:437–446, 1986.PubMedGoogle Scholar
  18. Cordon-Cardo, C., J. P. O’Brien, D. Casals, L. Rittman-Grauer, J. L. Biedler, M. R. Melamed, and J. R. Bertino. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc. Natl. Acad. Sci. USA 86:695–698, 1989.PubMedCrossRefGoogle Scholar
  19. Daly, J. W. and K. A. Jacobson. Adenosine receptors: Selective agonists and antagonists. In: Adenosine and Adenine Nucleotides: From Molecular Biology to Integrative Physiology, edited by L. Belardinelli and A. Pelleg. Boston: Kluwer, pp. 157–166, 1995.CrossRefGoogle Scholar
  20. De la Haba, G. and G. L. Cantoni. The enzymatic synthesis of S-adenosylhomocysteine from adenosine and homocysteine. J. Biol. Chem. 234:603–608, 1959.Google Scholar
  21. Des Rosiers, C. and S. Nées. Functional evidence for the presence of adenosine A2 receptors in cultured coronary endothelial cells. Naunyn-Schmiedeherg’s Arch. Pharmacol. 366:94, 1987.Google Scholar
  22. Deussen, A. and J. Schrader. Cardiac adenosine production is linked to myocardial pO2. J. Mol. Cell Cardiol. 23:495–504, 1991.PubMedCrossRefGoogle Scholar
  23. Deussen, A., G. Möser, and J. Schrader. Contribution of coronary endothelial cells to cardiac adenosine production. Pflügers Arch. 406:608–614, 1986.PubMedCrossRefGoogle Scholar
  24. Deussen, A., M. Borst, and J. Schrader. Formation of S-adenosylhomocysteine in the heart. I. An index of free intracellular adenosine. Circ. Res. 63:240–249, 1988a.PubMedGoogle Scholar
  25. Deussen, A., M. Borst, K. Kroll, and J. Schrader. Formation of S-adenosylhomocysteine in the heart. II: A sensitive index for regional myocardial underperfusion. Circ. Res. 63:251–261, 1988b.Google Scholar
  26. Deussen, A., H. G. E. Lloyd, and J. Schrader. Contribution of S-adenosylhomocysteine to cardiac adenosine formation. J. Mol. Cell Cardiol. 21:773–782, 1989.PubMedCrossRefGoogle Scholar
  27. Deussen, A., Ch. Walter, M. Borst, and J. Schrader. Transmural gradient of adenosine in the canine heart during functional hyperemia. Am. J. Physiol. 260:H671–H680, 1991.PubMedGoogle Scholar
  28. Deussen, A., B. Bading, K. Kelm, and J. Schrader. Formation and salvage of adenosine by macrovascular endothelial cells. Am. J. Physiol. 264:H692–H700, 1993.PubMedGoogle Scholar
  29. DiMarco, J. P., T. D. Sellers, R. M. Berne, G. A. West, and L. Belardinelli. Adenosine: Electrophysiologic effects and therapeutic use for terminating paroxysmal supraventricular tachycardia. Circulation 68:1254–1263, 1983.PubMedCrossRefGoogle Scholar
  30. Dobson, J. G. Mechanism of adenosine inhibition of catecholamine-induced responses in heart. Circ. Res. 52:151–160, 1983.PubMedGoogle Scholar
  31. Downey, J. M., G. S. Liu, and J. D. Thornton. Adenosine and the anti-infarct effects of preconditioning. Cardiovasc. Res. 27:3–8, 1993.PubMedCrossRefGoogle Scholar
  32. Druri, A. M. and A. Szent-Györgyi. The physiological activity of adenine compounds with special reference to their action upon the mammalian heart. J. Physiol. (London) 68:213–237, 1929.Google Scholar
  33. D’Souza, S. J. A. and D. F. Biggs. Tartrazine and indomethazin increase firing rates in the carotid sinus nerves of guinea pigs. Proc. West. Pharmacol. 28:135–137, 1985.Google Scholar
  34. Ely, S. W., G. P. Matherne, S. D. Coleman, and R. M. Berne. Inhibition of adenosine metabolism increases myocardial interstitial adenosine concentrations and coronary blood flow. J Mol. Cell Cardiol. 24:1321–1332, 1992.PubMedCrossRefGoogle Scholar
  35. Fleetwood, G., S. B. Coade, J. L. Gordon, and J. D. Pearson. Kinetics of adenine nucleotide catabolism in coronary circulation of rats. Am. J. Physiol. 256:H1565–H1572, 1989.PubMedGoogle Scholar
  36. Frick, G. P. and J. M. Lowenstein. Vectorial production of adenosine by 5-nucleotidase in the perfused rat heart. J. Biol. Chem. 253:1240–1244, 1978.PubMedGoogle Scholar
  37. Gerlach, E., F. J. Deuticke, and R. H. Dreisbach. Der Nucleotid-Abbau im Herzmuskel bei Sauerstoffmangel und seine mögliche Bedeutung für die Coronardurchblutung. Naturwissenschaften 50:228–229, 1963.CrossRefGoogle Scholar
  38. Gerlach, E. and F. J. Deuticke. Biochemische Aspekte der Adenosin-bedingten Koronar-dilatation. In: Kreislaufmessungen, 4. Freiburger Colloquium, edited by A. Fleckenstein München: E. Banaschewski. pp. 126–132, 1964.Google Scholar
  39. Goldman, S., E. S. Dickinson, and L. L. Slakey. Effect of adenosine on synthesis and release of cyclic AMP by cultured vascular cells from swine. J. Cyclic. Nucl. Prot. Phosphor. Res. 9:69, 1983.Google Scholar
  40. Headrick, J. P., G. P. Matherne, S. S. Berr, and R. M. Berne. Effects of graded perfusion and isovolumic work on epicardial and venous adenosine and cytosolic metabolism. J. Mol. Cell Cardiol. 23:309–324, 1991.PubMedCrossRefGoogle Scholar
  41. Henrichs, K. J., H. Matsuoka, and W. Schaper. Intracellular trapping of adenosine during myocardial ischemia by L-homocysteine. Basic Res. Cardiol. 81:267–275, 1986.PubMedCrossRefGoogle Scholar
  42. Jacobson, M. A. Molecular biology of adenosine receptors. In: Adenosine and Adenine nucleotides: from molecular biology to integrative physiology, edited by L. Belardinelli and A. Pelleg. Boston: Kluwer, pp. 5–13, 1995.CrossRefGoogle Scholar
  43. Jennings, R. B., K. A. Reimer, M. L. Hill, and S. E. Mayer. Total ischemia in dog hearts, in vitro. 1. Comparison of high energy phosphate production, utilization, and depletion, and of adenine nucleotide catabolism in total ischemia in vitro vs. severe ischemia in vivo. Circ. Res. 49:892–900, 1981.PubMedGoogle Scholar
  44. Kelm, M. and J. Schrader. Control of coronary vascular tone by nitric oxide. Circ. Res. 66:1561–1575, 1990.PubMedGoogle Scholar
  45. Kroll, K. and G. V. Martin. Steady-state catecholamine stimulation does not increase cytosolic adenosine in canine hearts. Am. J. Physiol. 265:H503–H510, 1994.Google Scholar
  46. Kroll, K., J. Schrader, H. M. Piper, and M. Henrich. Release of adenosine and cyclic AMP from coronary endothelium in isolated guinea pig hearts: Relation to coronary flow. Circ. Res. 60:659–665, 1987.PubMedGoogle Scholar
  47. Kroll, K., A. Deussen, and I. R. Sweet. Comprehensive model of transport and metabolism of adenosine and S-adenosylhomocysteine in the guinea pig heart. Circ. Res. 71:590–604, 1992.PubMedGoogle Scholar
  48. Kroll, K., U. K. M. Decking, K. Dreikorn, and J. Schrader. Rapid turnover of the AMP-adenosine metabolic cycle in the guinea pig heart. Circ. Res. 73:846–856, 1993.PubMedGoogle Scholar
  49. Lindner, F. and R. Rigler. Über die Beeinflussung der Weite der Herzkrankgefäße durch Produkte des Zellkernstoffwechsels. Pflügers Arch. 226:697–708, 1931.CrossRefGoogle Scholar
  50. Mattig, S. and A. Deussen. Flux through ecto-5′-nucleotidase pathway in macrovascular endothelial cells. Workshop “Extracellular Nucleotides: A novel and universal class of signalling molecules from receptors to clinical function.” Magdeburg, 1-2 December, 1995.Google Scholar
  51. Möser, G. H., J. Schrader, and A. Deussen. Turnover of adenosine in plasma of human and dog blood. Am. J. Physiol. 256:C799–C806, 1989.PubMedGoogle Scholar
  52. Murry, C. E., R. B. Jennings, and K. A. Reimer. Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136, 1986.PubMedCrossRefGoogle Scholar
  53. Mustafa, S. J. Effects of coronary vasodilator drugs on the uptake and release of adenosine in cardiac cells. Chem. Pharmacol. 28:2617–2624, 1979.CrossRefGoogle Scholar
  54. Mustafa, S. J., R. Marala, W. Abebe, N. Jeansonne, H. Olanrewaju, and T. Hussain. Coronary adenosine receptors: Subtypes, localization, and function. In: Adenosine and Adenine Nucleotides: From Molecular Biology to Integrative Physiology, edited by L. Belardinelli and A. Pelleg. Boston: Kluwer, pp. 229–239, 1995.CrossRefGoogle Scholar
  55. Nees, S., V. Herzog, B. F. Becker, M. Böck, C. Des Rosiers, and E. Gerlach. The coronary endothelium: A highly active metabolic barrier for adenosine. Basic Res. Cardiol. 80:515–529, 1985.PubMedCrossRefGoogle Scholar
  56. Newby, A. C. How does dipyridamole elevate extracellular adenosine concentration? Predictions from a three-compartment model of adenosine formation and inactivation. Biochem. J. 227:845–851, 1986.Google Scholar
  57. Olsson, R. A., and J. D. Pearson. Cardiovascular purinoceptors. Physiol. Rev. 70:761–845, 1990.PubMedGoogle Scholar
  58. Olsson, R. A., C. J. Davis, E. M. Khouri, and R. E. Patterson. Evidence for an adenosine receptor on the surface of dog coronary myocytes. Circ. Res. 39:93–98, 1976.PubMedGoogle Scholar
  59. Olsson, R. A., D. Saito, and C. R. Steinhardt. Compartmentalization of the adenosine pool of dog and rat hearts. Circ. Res. 50:617–626, 1982.PubMedGoogle Scholar
  60. Pearson, J. D., J. S. Carleton, and J. L. Gordon. Metabolism of adenine nucleotides by ectoenzymes of vascular endothelial and smooth-muscle cells in culture. Biochem. J. 190:421–429, 1980.PubMedGoogle Scholar
  61. Rosen, M. R., P. Danilo, and R. M. Weiss. Actions of adenosine on normal and abnormal impulse initiation in canine ventricle. Am. J. Physiol. 244:H715–H721, 1983.PubMedGoogle Scholar
  62. Rubio, R., R. M. Berne, and J. G. Dobson, Jr. Sites of adenosine production in cardiac and skeletal muscle. Am. J. Physiol. 225:938–953, 1973.PubMedGoogle Scholar
  63. Schiele, J. O. and U. Schwabe. Characterization of the adenosine receptor in microvascular coronary endothelial cells. Eur. J. Pharmacol. 269:51–58, 1994.PubMedCrossRefGoogle Scholar
  64. Scholtholt, J., R. E. Nitz, and E. Schraven. On the mechanism of the antagonistic action of xanthine derivatives against adenosine and coronary vasodilators. Drug Res. 22:1255–1259, 1972.Google Scholar
  65. Schrader, J. Metabolism of adenosine and sites of production in the heart. In: Regulatory Functions of Adenosine, edited by R. M. Berne, T. W. Rall, and R. Rubio. The Hague: M. Nijhoff, pp. 133–156, 1983.CrossRefGoogle Scholar
  66. Schrader, J. and E. Gerlach. Compartmentation of cardiac adenine nucleotides and formation of adenosine. Pflügers Arch. 367:129–135, 1976.PubMedCrossRefGoogle Scholar
  67. Schrader, W. P. and C. A. West. Localization of adenosine deaminase and adenosine deaminase complexing protein in the rabbit heart. Implications for adenosine metabolism. Circ. Res. 66:754–762, 1990.PubMedGoogle Scholar
  68. Schrader, J., J. G. Baumann, and E. Gerlach. Adenosine as inhibitor of myocardial effects of catecholamines. Pflügers Arch. 372:29–35, 1977a.PubMedCrossRefGoogle Scholar
  69. Schrader, J., F. J. Haddy, and E. Gerlach. Release of adenosine, inosine and hypoxanthine from the isolated guinea pig heart during hypoxia, flow-autoregulation and reactive hypermia. Pflügers Arch. 369:1–6, 1977b.PubMedCrossRefGoogle Scholar
  70. Schrader, J., H. Bardenheuer, and E. Gerlach. Role of S-adenosylhomocysteine hydrolase in adenosine metabolism in mammalian heart. Biochem. J. 196:65–70, 1981.PubMedGoogle Scholar
  71. Schütz, W., J. Schrader, and E. Gerlach. Different sites of adenosine formation in the heart. Am. J. Physiol. 240:H963–H970, 1984.Google Scholar
  72. Schwabe, U. Introduction to adenosine receptors. In: Role of Adenosine and Adenine Nucleotides in the Biological System, edited by S. Imai and M. Nakazawa. Amsterdam: Elsevier, pp. 59–69, 1991.Google Scholar
  73. Smolenski, R. T., J. Schrader, H. De Groot, and A. Deussen. Oxygen partial pressure and free intracellular adenosine of isolated cardiomyocytes. Am. J. Physiol. 260:C708–C714, 1991.PubMedGoogle Scholar
  74. Sollevi, A. Cardiovascular effects of adenosine in man: Possible clinical implications. Progr. Neurohiol. 27:319–349, 1986.CrossRefGoogle Scholar
  75. Sparks, H. V. and H. Bardenheuer. Regulation of adenosine formation by the heart. Circ. Res. 58:193–201, 1986.PubMedGoogle Scholar
  76. Stumpe, T. and J. Schrader. Adenosine formation and phosphorylation potential in isolated rat cardiomyocytes at different pO 2 and oxygen consumption rates. Drug Devel. Res. 31:326 (abstract), 1994.Google Scholar
  77. Thiebaut, F., T. Tsuruo, H. Hamada, M. M. Gottesmann, I. Pastan, and M. C. Willingham. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc. Natl. Acad. Sci. USA 84:7735–7738, 1987.PubMedCrossRefGoogle Scholar
  78. Ueland, P. M. Pharmacological and biochemical aspects of S-adenosylhomocysteine and S-adenosylhomocysteine hydrolase. Pharmacol. Rev. 34:223–253, 1982.PubMedGoogle Scholar
  79. Ueland, P. M. and J. Saebo. Sequestration of adenosine in crude extract from mouse liver and other tissues. Biochem. Biophys. Acta 587:341–352, 1979.PubMedGoogle Scholar
  80. Wangler, R. D., M. W. Gorman, C. Y. Wang, D. F. Dewitt, I. S. Chan, J. B. Bassing-thwaighte, and H. V. Sparks. Transcapillary adenosine transport and interstitial adenosine concentration in guinea pig hearts. Am. J. Physiol. 257:H89–H106, 1989.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1998

Authors and Affiliations

  • Andreas Deussen

There are no affiliations available

Personalised recommendations