Skip to main content

The Gibbs Conditioning Principle for Markov Chains

  • Chapter

Part of the book series: Progress in Probability ((PRPR,volume 44))

Abstract

Let X 1, X 2,… be an irreducible Markov chain taking values in a measurable space (S, S), \(u:{S^2} \to {\mathbb{R}^d},{U_n} = \sum {_{i = 1}^n} u({X_i},{X_{i + 1}}),C \subset {\mathbb{R}^d}\) open and convex. Then conditioned on {U n nC} (and under some hypotheses on {X n }), it is shown that {X n } converges to a Markov chain, whose transition mechanism is specified.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartfai, P. (1972), On a conditional limit theorem, Coll. Math. Soc. Janos Bolyai. 9 European Meeting of Statisticians, Budapest, 85–91.

    Google Scholar 

  2. Bolthausen, E. (1986). Laplace approximations for sums of independent random vectors. Probab. Theory Related Fields (72) 305–318.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bolthausen, E. (1987). Laplace approximations for sums of inde-pendent random vectors. Part II. Probab. Theory Related Fields (76) 167–205.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bolthausen, E., Deuschel, J.D., and Tamura, Y. (1995). Laplace ap-proximations for large deviations of nonreversible Markov processes. The nondegenerate case. Ann. Prob. (23) 236–267.

    Article  MathSciNet  MATH  Google Scholar 

  5. Csiszar, I. (1984). Sanov property, generalized 1-projection and a conditional limit theorem. Ann. Prob. (12) 768–793.

    Google Scholar 

  6. Csiszar, I., Cover, T.M., and Choi, B.S. (1987). Conditional limit the-orems under Markov conditioning. IEEE Trans. Inf. Theory (IT-33) 788–801.

    Article  MathSciNet  Google Scholar 

  7. Dembo, A. and Kuelbs, J. (1997). A Gibbs conditioning principle for certain infinite dimensional statistics. University of Wisconsin Technical Report.

    Google Scholar 

  8. Dembo, A. and Zeitouni, O. (1996). Refinements of the Gibbs conditioning principle. Prob. Th. Relat. Fields (104) 1–14.

    Article  MathSciNet  MATH  Google Scholar 

  9. Dembo, A. and Zeitouni, O. (1998). Large Deviation Techniques and Applications,2nd Edn., Springer-Verlag, New York.

    Google Scholar 

  10. Deuschel, J.D., Stroock, D.W., and Zessin, H. (1991). Microcanonical distributions for lattice gases. Commun. Math. Phys. (139) 83–101.

    Article  MathSciNet  MATH  Google Scholar 

  11. Dobrushin, R.L., and Tirozzi, B. (1977). The central limit theorem and the problem of equivalence of ensembles. Commun. Math. Phys. (54) 173–192.

    Article  MathSciNet  MATH  Google Scholar 

  12. Ellis, R.S. (1985). Entropy, Large Deviations and Statistical Mechan-ics. Springer-Verlag, Berlin.

    Google Scholar 

  13. Gibbs, J.W. (1902). Principles in Statistical Mechanics. Yale Univ. Press, New Haven, Conn.

    MATH  Google Scholar 

  14. Iscoe, I., Ney, P., and Nummelin, E. (1985). Large deviations of uni-formly recurrent Markov additive processes. Adv. in Appl. Math. (6) 373–412.

    Article  MathSciNet  MATH  Google Scholar 

  15. Jaynes, E.T. (1967). Foundations of Probability Theory and Statistical Mechanics. In Delaware Seminary in Foundation of Physics. Springer-Verlag, Berlin.

    Google Scholar 

  16. Kuelbs, J. (1998). Large deviation probabilities and dominating points for open, convex sets: non-logarithmic behavior. University of Wisconsin Technical Report.

    Google Scholar 

  17. ] Lehtonen, T. and Nummelin, E. (1988). On the convergence of empir-ical distributions under partial observations. Ann. Acad. Sc. Fennicae. Ser. A.I. (13) 219–223.

    MathSciNet  MATH  Google Scholar 

  18. Lehtonen, T. and Nummelin, E. (1990). Level I theory of large deviations in the ideal gas. Int’l J. of Theoret. Phys. (29) 621–635.

    Article  MathSciNet  MATH  Google Scholar 

  19. Martin-Löf, A. (1979). Statistical Mechanics and the Foundations of Thermodynamics. Springer-Verlag, Berlin.

    Google Scholar 

  20. Meda, A. and Ney, P. (1998). A conditioned law of large numbers for Markov additive chains. Studia Sc. Math. Hungarica (34) 305–316.

    MathSciNet  MATH  Google Scholar 

  21. Neveu, J. (1963). Sur le Théorème ergodique de Chung-Erdös, C.R. Aca. Sci. Paris, (257) 2953–2955.

    MathSciNet  MATH  Google Scholar 

  22. Ney, P. (1983). Dominating points and the asymptotics of large deviations on ℝd. Ann. Prob. (11) 158–167.

    Article  MathSciNet  MATH  Google Scholar 

  23. Ney, P. and Nummelin, E. (1987). Markov additive processes I: Eigenvalue properties and limit theorems. Ann. Prob. (15) 561–592.

    Article  MathSciNet  MATH  Google Scholar 

  24. Nummelin, E. (1984). General irreducible Markov chains and non- negative operators. Cambridge University Press, Cambridge, UK.

    Book  MATH  Google Scholar 

  25. Schroeder, C. (1993). I-projection and limit theorems for discrete parameter Markov chains. Ann. Prob. (21) 721–758.

    Article  MathSciNet  MATH  Google Scholar 

  26. Stroock, D.W. and Zeitouni, O. (1991). Microcanonical distribu-tions, Gibbs states, and the equivalence of ensembles. In E Spitzer Festschrift, R. Durrett and H. Kesten Eds., Birkhäuser, Boston.

    Google Scholar 

  27. Sznitman, A. (1991). Topics in propagation of chaos. Lecture Notes in Mathematics 1464. Springer-Verlag, New York.

    Google Scholar 

  28. Van Campenhout, J.M. and Cover, T.M. (1981). Maximum entropy and conditional probability. IEEE Trans. Inf. Theory. IT-27, 483–489.

    Google Scholar 

  29. Vasicek, A.O. (1980). A conditional law of large numbers. Ann. Prob. (8) 142–147.

    Article  MathSciNet  MATH  Google Scholar 

  30. Zabell, S. (1980). Rates of convergence for conditional expectations. Ann. Prob. 5(8) 928–941.

    Article  MathSciNet  Google Scholar 

  31. Zabell, S. (1993). A limit theorem for expectations conditional on a sum. J. Th. Prob. 2(6) 267–283.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Birkhäuser Boston

About this chapter

Cite this chapter

Meda, A., Ney, P. (1999). The Gibbs Conditioning Principle for Markov Chains. In: Bramson, M., Durrett, R. (eds) Perplexing Problems in Probability. Progress in Probability, vol 44. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-2168-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2168-5_21

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-7442-1

  • Online ISBN: 978-1-4612-2168-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics