Skip to main content

Lattice Trees, Percolation and Super-Brownian Motion

  • Chapter

Part of the book series: Progress in Probability ((PRPR,volume 44))

Abstract

This paper surveys the results of recent collaborations with Eric Derbez and with Takashi Hara, which show that integrated super-Brownian excursion (ISE) arises as the scaling limit of both lattice trees and the incipient infinite percolation cluster, in high dimensions. A potential extension to oriented percolation is also mentioned.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Aizenman. Scaling limit for the incipient spanning clusters. In K.M. Golden, G.R. Grimmett, R.D. James, G.W. Milton, and P.N. Sen, editors, Mathematics of Materials: Percolation and Composites. Springer-Verlag, New York, (1997).

    Google Scholar 

  2. M. Aizenman and A. Burchard. Hölder regularity and dimension bounds for random curves. Duke Math. J. To appear.

    Google Scholar 

  3. M. Aizenman and C.M. Newman. Tree graph inequalities and critical behavior in percolation models. J. Stat. Phys., 36: 107–143, (1984).

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Aldous. The continuum random tree III. Ann. Probab., 21: 248–289, (1993).

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Aldous. Tree-based models for random distribution of mass. J. Stat. Phys., 73: 625–641, (1993).

    Article  MathSciNet  MATH  Google Scholar 

  6. C. Borgs, J.T. Chayes, R. van der Hofstad, and G. Slade. Mean-field lattice trees. Ann. Combinat. To appear.

    Google Scholar 

  7. D.C. Brydges and T. Spencer. Self-avoiding walk in 5 or more dimensions. Commun. Math. Phys., 97: 125–148, (1985).

    Article  MathSciNet  MATH  Google Scholar 

  8. T. Cox, R. Durrett, and E.A. Perkins. Rescaled particle systems converging to super-Brownian motion. In this volume.

    Google Scholar 

  9. D. Dawson and E. Perkins. Measure-valued processes and renormalization of branching particle systems. In R. Carmona and B. Rozovskii, editors, Stochastic Partial Differential Equations: Six Perspectives. AMS Math. Surveys and Monographs, (1998).

    Google Scholar 

  10. D.A. Dawson. Measure-valued Markov processes. In Ecole d’Eté de Probabilités de Saint-Flour 1991. Lecture Notes in Mathematics #1541, Springer, Berlin, (1993).

    Google Scholar 

  11. E. Derbez and G. Slade. Lattice trees and super-Brownian motion. Canad. Math. Bull., 40: 19–38, (1997).

    Article  MathSciNet  MATH  Google Scholar 

  12. E. Derbez and G. Slade. The scaling limit of lattice trees in high dimensions. Commun. Math. Phys., 193: 69–104, (1998).

    Article  MathSciNet  Google Scholar 

  13. R. Durrett and E.A. Perkins. Rescaled contact processes converge to super-Brownian motion for d > 2. To appear in Probab. Th. Rel. Fields.

    Google Scholar 

  14. G. Grimmett. Percolation. Springer, Berlin, (1989).

    MATH  Google Scholar 

  15. T. Hara and G. Slade. The scaling limit of the incipient infinite cluster in high-dimensional percolation. I. Critical exponents. Preprint.

    Google Scholar 

  16. T. Hara and G. Slade. The scaling limit of the incipient infinite cluster in high-dimensional percolation. II. Integrated super-Brownian excursion. Preprint.

    Google Scholar 

  17. T. Hara and G. Slade. On the upper critical dimension of lattice trees and lattice animals. J. Stat. Phys., 59: 1469–1510, (1990).

    Article  MathSciNet  MATH  Google Scholar 

  18. T. Hara and G. Slade. The number and size of branched polymers in high dimensions. J. Stat. Phys., 67: 1009–1038, (1992).

    Article  MathSciNet  MATH  Google Scholar 

  19. T. Hara and G. Slade. Mean-field behaviour and the lace expansion. In G. Grimmett, editor, Probability and Phase Transition, Kluwer, Dordrecht, (1994).

    Google Scholar 

  20. T. Hara and G. Slade. The incipient infinite cluster in high-dimensional percolation. Electron. Res. Announc. Amer. Math. Soc., 4:48–55, (1998). http://www.ams.org\era\.

    Article  MathSciNet  MATH  Google Scholar 

  21. R. van der Hofstad, E den Hollander, and G. Slade. A new inductive approach to the lace expansion for self-avoiding walks. Probab. Th. Rel. Fields, 111: 253–286, (1998).

    Article  MATH  Google Scholar 

  22. H. Kesten. The incipient infinite cluster in two-dimensional percolation. Probab. Th. Rel. Fields, 73: 369–394, (1986).

    Article  MathSciNet  MATH  Google Scholar 

  23. J.-F. Le Gall. Branching processes, random trees and superprocesses. In Proceedings of the International Congress of Mathematicians, Berlin, 1998, volume III, pages 279–289, (1998). Documenta Mathematica, Extra Volume ICM 1998.

    Google Scholar 

  24. J. E Le Gall. The uniform random tree in a Brownian excursion. Probab. Th. Rel. Fields, 96: 369–383, (1993).

    Article  MATH  Google Scholar 

  25. J.-F. Le Gall. The Hausdorff measure of the range of super-Brownian motion. In this volume.

    Google Scholar 

  26. N. Madras and G. Slade. The Self-Avoiding Walk. Birkhäuser, Boston, (1993).

    MATH  Google Scholar 

  27. B.G. Nguyen and W-S. Yang. Triangle condition for oriented percolation in high dimensions. Ann. Probab., 21: 1809–1844, (1993).

    Article  MathSciNet  MATH  Google Scholar 

  28. B.G. Nguyen and W-S. Yang. Gaussian limit for critical oriented percolation in high dimensions. J. Stat. Phys., 78: 841–876, (1995).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Birkhäuser Boston

About this chapter

Cite this chapter

Slade, G. (1999). Lattice Trees, Percolation and Super-Brownian Motion. In: Bramson, M., Durrett, R. (eds) Perplexing Problems in Probability. Progress in Probability, vol 44. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-2168-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2168-5_2

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-7442-1

  • Online ISBN: 978-1-4612-2168-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics