Skip to main content

Rescaled Particle Systems Converging to Super-Brownian Motion

  • Chapter

Part of the book series: Progress in Probability ((PRPR,volume 44))

Abstract

Super-Brownian motion was originally constructed as a scaling limit of branching random walk. Here we describe recent results which show that, in two or more dimensions, it is also the limit of long range contact processes and long, short, and medium range voter models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, R. and Tribe, R. (1997) Uniqueness for a historical SDE with a singular drift. Preprint.

    Google Scholar 

  • Barlow, M.T., Evans, S.N., and Perkins, E. (1991) Collision local times and measure-valued processes. Ann. Prob. 43, 897–938.

    MathSciNet  MATH  Google Scholar 

  • Bramson, M., Durrett, R., and Swindle, G. (1989) Statistical mechanics of crab grass. Ann. Prob. 17, 444–481.

    Article  MathSciNet  MATH  Google Scholar 

  • Cox, J.T., and Durrett, R. (1995) Hybrid zones and voter model interfaces. Bernoulli 1, 343–370.

    Article  MathSciNet  MATH  Google Scholar 

  • Cox, J.T., Durrett, R., and Perkins, E. (1998) Resealed voter models converge to super-Brownian motion. Preprint.

    Google Scholar 

  • Cox, J.T. and Greven, A. (1994) Ergodic theorems for infinite systems of locally interacting diffusions. Ann. Prob. 22, 833–853.

    Article  MathSciNet  MATH  Google Scholar 

  • Cox, J.T. and Griffeath, D. (1986) Diffusive clustering in the two dimensional voter model. Ann. Prob. 14, 347–370.

    Article  MathSciNet  MATH  Google Scholar 

  • Dawson, D.A. (1978) Geostochastic calculus. Can. J. Statistics 6, 143–168.

    Article  MATH  Google Scholar 

  • Dawson, D.A. (1993) Measure-valued Markov processes. Pages 1–260 in Ecole d’été de Probabilités de St. Flour, XXL Lecture Notes in Mathematics 1541, Springer-Verlag, New York.

    Google Scholar 

  • Dawson and Perkins (1998) Long-time behaviour and co-existence in a mutually catalytic branching model. Ann. Prob. 26, 1088–1138.

    Article  MathSciNet  Google Scholar 

  • Dawson and Perkins (1999) Measure-valued processes and renormalization of branching particle systems. Pages 45–106 in Stochastic partial differential equations: Six perspectives. Edited by R. Carmona and B. Rozovsky. AMS Math Surveys and Monographs 64.

    Google Scholar 

  • Derbez, E. and Slade, G. (1998) The scaling limit of lattice trees in high dimensions. Comm. Math. Phys. 193, 69–104.

    Article  MathSciNet  Google Scholar 

  • Donnelly and Kurtz (1998) Particle representations for measure-valued populations models. Ann. Prob., to appear.

    Google Scholar 

  • Durrett, R. (1988) Lecture Notes on Particle Systems and Percolation. Wadsworth Pub. Co., Belmont, CA.

    Google Scholar 

  • Durrett, R. (1992a) A new method for proving the existence of phase transitions. Pages 141–170 in Spatial Stochastic Processes. Edited by K.S. Alexander and J.C. Watkins. Birkhäuser, Boston.

    Google Scholar 

  • Durrett, R. (1992b) The contact process: 1974–89. Pages 1–18 in Mathematics of Random Media Edited by W. Kohler and B. White. American Math.

    Google Scholar 

  • Society, Providence, RI. Durrett, R. (1995) Ten lectures on particle systems. Pages 97–201 in Ecole d’été de Probabilités de St. Flour, XXIII. Lecture Notes in Mathematics 1608, Springer-Verlag, New York.

    Google Scholar 

  • Durrett, R. and Levin, S.A. (1997) Allelopathy in spatially distributed populations. J. Theor. Biol., 185, 165–172.

    Article  Google Scholar 

  • Durrett, R. and Perkins, E. (1998) Resealed contact processes converge to super-Brownian motion in two or more dimensions. Prob. Th. Rel. Fields., to appear.

    Google Scholar 

  • Ethier, S. and Kurtz, T. (1986) Markov Processes: Characterization and Convergence. John Wiley, New York.

    MATH  Google Scholar 

  • Evans, S.N. and Perkins, E. (1994) Measure-valued branching diffusions with singular interactions. Can. J. Math. 46, 120–168.

    Article  MathSciNet  MATH  Google Scholar 

  • Evans, S.N. and Perkins, E. (1998) Collision local times, historical stochastic calculus and competing superprocesses. Elect. J. Prob. 3.

    Google Scholar 

  • Griffeath, D. (1978) Additive and Cancellative Interacting Particle Systems. Lecture Notes in Mathematics 724. Springer-Verlag, New York.

    Google Scholar 

  • Harris, T. (1963) Branching Processes. Springer-Verlag, New York.

    MATH  Google Scholar 

  • Jacod, J. and Shiryaev, A.N. (1987) Limit Theorems for Stochastic Processes. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Konno, N. and Shiga, T. (1988) Stochastic differential equations for some measure-valued diffusions. Prob. Theory Rel. Fields 79, 201–225.

    Article  MathSciNet  MATH  Google Scholar 

  • Kurtz, T. (1998) Martingale problems for conditional distributions of Markov processes. Elect. J. Prob. 3.

    Google Scholar 

  • LeGall, J.-F. (1995) Mouvement brownien, processus du branchement et superprocesses. Unpublished course notes.

    Google Scholar 

  • Liggett, T. (1985) Interacting Particle Systems. Springer-Verlag, New York.

    MATH  Google Scholar 

  • Mueller, C. and Tribe, R. (1994) A phase transition for a stochastic PDE related to the contact process. Prob. Theory Rel. Fields 100, 131–156.

    Article  MathSciNet  MATH  Google Scholar 

  • Mueller, C. and Tribe, R. (1995) Stochastic PDE’s arising from the long range contact process and long range voter model. Prob. Theory Rel. Fields 102, 519–546.

    Article  MathSciNet  MATH  Google Scholar 

  • Mytnik, L. (1998) Weak uniqueness for the heat equation with noise. Ann. Prob. 26, 968–984.

    Article  MathSciNet  MATH  Google Scholar 

  • Mytnik, L. (1998) Uniqueness for a competing species model. Can. J. Math., to appear.

    Google Scholar 

  • Perkins, E. (1989) The Hausdorff measure of the closed support of super-Brownian motion. Ann. Inst. Henri Poincaré Prob. et Stat. 25, 205–224.

    MathSciNet  MATH  Google Scholar 

  • Perkins, E. (1992) Measure-valued branching diffusions with spatial interactions. Prob. Th. Rel. Fields 94, 189–245.

    Article  MathSciNet  MATH  Google Scholar 

  • Perkins, E. (1995) On the martingale problem for interactive measure-valued branching diffusions. Memoirs of the American Math. Soc. 115 no. 549.

    MathSciNet  Google Scholar 

  • Presutti, E. and Spohn, H. (1983) Hydrodynamics for the voter model. Ann. Prob. 4, 867–875.

    Article  MathSciNet  Google Scholar 

  • Reimers, M. (1989) One dimensional stochastic partial differential equations and the branching measure diffusion. Prob. Theory Rel. Fields 81, 319–340.

    Article  MathSciNet  MATH  Google Scholar 

  • Shiga, T. (1980a) An interacting system in population genetics. J. Math. Kyoto U. 20, 213–242.

    MathSciNet  Google Scholar 

  • Shiga, T. (1980b) An interacting system in population genetics, II. J. Math. Kyoto U. 20, 723–732.

    MathSciNet  MATH  Google Scholar 

  • Shiga, T. (1987) A certain class of infinite-dimensional diffusion processes arising in population genetics. J. Math. Soc. Japan. 39, 17–25.

    Article  MathSciNet  MATH  Google Scholar 

  • Shiga, T. (1988) Stepping stone models in population genetics and population dynamics. In Stochastic Proceses in Physics and Engineering. Edited by S. Albeverio et al.

    Google Scholar 

  • Shiga, T. and Uchiyama, K. (1986) Stationary states and their stability of the stepping stone model involving mutation and selection. Prob. Th. Rel. Fields. 73, 87–117.

    Article  MathSciNet  MATH  Google Scholar 

  • Slade, G. (1999) Lattice trees, percolation and super-Brownian motion. In this volume.

    Google Scholar 

  • Walsh, J. (1986) An introduction to stochastic partial differential equations. Pages 265–439 in Ecole d’été de Probabilités de St. Flour, XIV Lecture Notes in Mathematics 1180, Springer-Verlag, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Birkhäuser Boston

About this chapter

Cite this chapter

Cox, T., Durrett, R., Perkins, E.A. (1999). Rescaled Particle Systems Converging to Super-Brownian Motion. In: Bramson, M., Durrett, R. (eds) Perplexing Problems in Probability. Progress in Probability, vol 44. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-2168-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2168-5_15

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-7442-1

  • Online ISBN: 978-1-4612-2168-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics