Skip to main content

Factors That Affect Human Mast Cell and Basophil Growth

  • Chapter
Signal Transduction in Mast Cells and Basophils

Abstract

Mast cells and basophils are specialized effector cells of the immune system and both cells express FcεRI, stain metachromatically, synthesize a number of cytokines, and have comparable amounts of histamine. It has been assumed that the two cells share a common progenitor, or that one cell originates from the other. This notion is unlikely to be correct because basophils appear to represent a terminally differentiated cell rather than a peripheral blood mast cell precursor. In addition, mast cells and basophils have distinguishing features with respect to morphology, mediator content, response to distinct cytokines, and specific cell-surface molecules that identify these two cells as distinct.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fodinger M, Fritsch G, Winkler K, et al. Origin of human mast cell: development from transplanted haematopoietic stem cells after allogeneic bone marrow transplantation. Blood 1994;84:2954–2959.

    PubMed  CAS  Google Scholar 

  2. Agis H, Willheim M, Sperr WR, et al. Monocytes do not make mast cells when cultured in the presence of SCF. Characterization of the circulating mast cell progenitor as a c-kit, CD34+, Ly-, CD14-, CD17-, colony-forming cell. J Immunol 1995;151:4221–4227.

    Google Scholar 

  3. Rottem M, Okada T, Goff JP, et al. Mast cells cultured from the peripheral blood of normal donors and patients with mastocytosis originate from a CD34+/FceRI- cell population. Blood 1994;84:2489–2496.

    PubMed  CAS  Google Scholar 

  4. Smith TJ, Weis JH. Mucosal T cells and mast cells share common adhesion receptors. Immunol Today 1996;17:60–64.

    Article  PubMed  CAS  Google Scholar 

  5. Guo CB, Kagey-Sobotka A, Lichtenstein LM, et al. Immunophenotyping and functional analysis of purified human uterine mast cells. Blood 1992;79:708–712.

    PubMed  CAS  Google Scholar 

  6. Shimizu Y, Irani AM, Brown EJ, et al. Human mast cells derived from fetal liver cells cultured with stem cell factor express a functional CD51/CD61 (αvβ3) integrin. Blood 1995;86:930–939.

    PubMed  CAS  Google Scholar 

  7. Guo CB, Liu MC, Galli SJ, et al. The histamine containing cells in the late phase response in the lung are basophils. J Allergy Clin Immunol 1990;85:172.

    Google Scholar 

  8. Rothenburg ME, Caulfield JP, Austen KF, et al. Biochemical and morphological characterization of basophilic leucocytes from two patients with myelogenous leukemia. J Immunol 1987;138:2616–2625.

    Google Scholar 

  9. Dvorak AM. Basophil and mast cell degranulation and recovery. In: Harris RJ, ed. Blood Cell Biochemistry. New York: Plenum Press, 1991;4:1.

    Google Scholar 

  10. Irani AA, Schechter NM, Craig SS, et al. Two types of human mast cells that have distinct neutral protease compositions. Proc Natl Acad Sci USA 1986;83:4464–4468.

    Article  PubMed  CAS  Google Scholar 

  11. Irani AM, Schwartz LB. Mast cell heterogeneity. Clin Exp Allergy 1989;19:143–155.

    Article  PubMed  CAS  Google Scholar 

  12. Castells MC, Irani AM, Schwartz LB. Evaluation of human peripheral blood leukocytes for mast cell tryptase. J Immunol 1987;138:2184–2189.

    PubMed  CAS  Google Scholar 

  13. Valent P, Besemer J, Kishi K, et al. IL-3 promotes basophilic differentiation of KU812 cells through high affinity binding sites. J Immunol 1990;145:1885–1889.

    PubMed  CAS  Google Scholar 

  14. Valent P, Majdic O, Maurer D, et al. Further characterization of surface membrane structures expressed on human basophils and mast cells. Int Arch Allergy Appl Immunol 1990;91:198–203.

    Article  PubMed  CAS  Google Scholar 

  15. Bochner BS, McKelvey AA, Sterbinsky SA, et al. IL-3 augments adhesiveness for endothelium and CD11b expression in human basophils but not neutrophils. J Immunol 1990;145:1832–1837.

    PubMed  CAS  Google Scholar 

  16. Stain C, Stockinger H, Scharf M, et al. Human blood basophils display a unique phenotype including activation linked membrane structures. Blood 1987;70:1872–1879.

    PubMed  CAS  Google Scholar 

  17. Lerner NB, Nocka KH, Cole SR, et al. Monoclonal antibody YB5.B8 identifies the human c-kit protein product. Blood 1991;77:1876–1883.

    PubMed  CAS  Google Scholar 

  18. Bodger MP, Newton LA. The purification of human basophils: their immunophenotype and cytochemistry. Br J Haematol 1987;67:281–284.

    Article  PubMed  CAS  Google Scholar 

  19. Bodger MP, Mounsey GL, Nelson J, et al. A monoclonal antibody reacting with human basophils. Blood 1987;69:1414–1418.

    PubMed  CAS  Google Scholar 

  20. Irani AM, Goldstein SM, Wintroub BU, et al. Human mast cell carboxypeptidase: selective localization to MCTC cells. J Immunol 1991;147:247–253.

    PubMed  CAS  Google Scholar 

  21. Schechter NM, Irain AA, Sprows JL, et al. Identification of a cathepsin G-like proteinase in the MCTC type of human mast cell. J Immunol 1990;145:2652–2661.

    PubMed  CAS  Google Scholar 

  22. Schwartz LB. Monoclonal antibodies against human mast cell tryptase demonstrate shared antigenic sites on subunits of tryptase and selective localization of the enzyme to mast cells. J Immunol 1985;134:526–531.

    PubMed  CAS  Google Scholar 

  23. Weidner N, Austen KF. Heterogeneity of mast cells at multiple body sites: fluorescent determination of avidin binding and immunofluorescent determination of chymase, tryptase, and carboxypeptidaase content. Pathol Res Pract 1993;189:156–162.

    PubMed  CAS  Google Scholar 

  24. Valent P, Schmidt G, Besemer J, et al. Interleukin-3 is a differentiation factor for human basophils. Blood 1989;73:1763–1769.

    PubMed  CAS  Google Scholar 

  25. Denburg JA, Silver JE, Abrams JS. Interleukin-5 is a human basophilopoietin: induction of histamine content and basophilic differentiation of HL-60 cells and of peripheral blood basophileosinophil progenitors. Blood 1991;77:1462–1468.

    PubMed  CAS  Google Scholar 

  26. Tsuda T, Wong D, Dolovich J, et al. Synergistic effects of nerve growth factor and granulocyte-macrophage colony-stimulating factor on human basophilic cell differentiation. Blood 1991;77:971–979.

    PubMed  CAS  Google Scholar 

  27. Tsuda T, Switzer J, Bienenstock J, et al. Interactions of hemopoietic cytokines on differentiation of HL-60 cells. Nerve growth factor is a basophilic lineage-specific co-factor. Int Arch Allergy Appl Immunol 1990;91:15–21.

    Article  PubMed  CAS  Google Scholar 

  28. Matsuda H, Coughlin MD, Bienenstock J, et al. Nerve growth factor promotes human hemopoietic colony growth and differentiation. Proc Natl Acad Sci USA 1988;85:6508–6512.

    Article  PubMed  CAS  Google Scholar 

  29. Sillaber C, Geissler K, Eher R, et al. Type β transforming growth factor promotes IL-3 dependent differentiation of human basophils but inhibits IL-3 dependent differentiation of human eosinophils. Blood 1992;80:634–641.

    PubMed  CAS  Google Scholar 

  30. Richard A, McColl SR, Pelletier G. Interleukin-4 and nerve growth factor can act as cofactors for interleukin-3-induced histamine production in human umbilical cord blood cells in serum-free culture. Br J Haematol 1992;81:6–11.

    Article  PubMed  CAS  Google Scholar 

  31. Valent P, Besemer J, Kishi K, et al. Human basophils express interleukin-4 receptors. Blood 1990;76:1734–1738.

    PubMed  CAS  Google Scholar 

  32. Campbell HD, Tucker WQ, Hort Y, et al. Molecular cloning, nucleotide sequence, and expression of the gene encoding human eosinophil differentiation factor (interleukin 5). Proc Natl Acad Sci USA 1987;84:6629–6633.

    Article  PubMed  CAS  Google Scholar 

  33. Yokota T, Coffman RL, Hagiwara H, et al. Isolation and characterization of lymphokine cDNA clones encoding mouse and human IgA-enhancing factor and eosinophil colony-stimulating factor activities: relationship to interleukin 5. Proc Natl Acad Sci USA 1987;84:7388–7392.

    Article  PubMed  CAS  Google Scholar 

  34. Denburg JA, Silver JE, Abrams JS. Interleukin-5 is a human basophilopoietin: induction of histamine content and basophilic differentiation of HL-60 cells and of peripheral blood basophil-eosinophil progenitors. Blood 1991;77:1462–1468.

    PubMed  CAS  Google Scholar 

  35. Ihle JN, Keller J, Oroszlan S, et al. Biological properties of homogeneous interleukin 3. I. Demonstration of WEHI-3 growth-factor activity, mast cell growth-factor activity. P cell-stimulating factor activity and histamine-producing factor activity, colony-stimulating factor activity, and histamine-producing cell-stimulating factor activity. J Immunol 1983;131:282–287.

    PubMed  CAS  Google Scholar 

  36. Razin E, Ihle JN, Seidin D, et al. Interleukin 3: a differentiation and growth factor for the mouse mast cell that contains chondroitin sulfate E proteoglycan. J Immunol 1984;132:1479–1486.

    CAS  Google Scholar 

  37. Lee F, Yokota T, Otsuka T, et al. Isolation and characterization of a mouse interleukin cDNA clone that expresses В-cell stimulatory factor 1 activities and T-cell- and mast-cell-stimulating activities. Proc Natl Acad Sci USA 1986;83:2061–2065.

    Article  PubMed  CAS  Google Scholar 

  38. Hamaguchi Y, Kanakura Y, Fujita J, et al. Interleukin-4 as an essential factor for in vitro clonal growth of murine connective tissue-type mast cells. J Exp Med 1987;165:268–273.

    Article  PubMed  CAS  Google Scholar 

  39. Hultner L, Druez C, Moeller J, et al. Mast cell growth-enhancing activity (MEA) is structurally related and functionally identical to the novel mouse T cell growth factor P40/TCGFIII (interleukin 9). Eur J Immunol 1990;20:1413–1416.

    Article  PubMed  CAS  Google Scholar 

  40. Eklund KK, Ghildyal N, Austen KF, et al. Induction by IL-9 and suppression by IL-3 and IL-4 of the levels of chromosome 14-derived transcripts that encode late-expressed mouse mast cell proteases. J Immunol 1993;151:4266–4273.

    PubMed  CAS  Google Scholar 

  41. Thompson-Snipes L, Dhar V, Bond MW, et al. Interleukin 10: a novel stimulatory factor for mast cells and their progenitors. J Exp Med 1991;173:507–510.

    Article  PubMed  CAS  Google Scholar 

  42. Ghildyal N, McNeil HP, Gurish MF, et al. Transcriptional regulation of the mucosal mast cell-specific protease gene, MMCP-2, by interleukin 10 and interleukin 3. J Biol Chem 1992;267:8473–8477.

    PubMed  CAS  Google Scholar 

  43. Ghildyal N, McNeil HP, Stechschulte S, et al. IL-10 induces transcription of the gene for mouse mast cell protease-1, a serine protease preferentially expressed in mucosal mast cells of Trichinella spiralis-infected mice. J Immunol 1992;149:2123–2129.

    PubMed  CAS  Google Scholar 

  44. Matsuda H, Kaman Y, Ushio H, et al. Nerve growth factor induces development of connective tissue-type mast cells in vitro from murine bone marrow cells. J Exp Med 1989;174:7–14.

    Article  Google Scholar 

  45. Bressler RB, Thompson HL, Keffer JM, et al. Inhibition of the growth of IL-3-dependent mast cells from murine bone marrow by recombinant granulocyte macrophage-colony-stimulating factor. J Immunol 1989;143:135–139.

    PubMed  CAS  Google Scholar 

  46. Ishizaka T, Dvorak AM, Conrad DH, et al. Morphologic and immunologic characterization of human basophils developed in cultures of cord blood mononuclear cells. J Immunol 1985;134:532–540.

    PubMed  CAS  Google Scholar 

  47. Ishizaka T, Conrad DH, Huff TF, et al. Unique features of human basophilic granulocytes developed in in vitro culture. Int Arch Allergy Appl Immunol 1985;77:137–143.

    Article  PubMed  CAS  Google Scholar 

  48. Kirshenbaum AS, Goff JP, Dreskin SC, et al. IL-3-dependent growth of basophil-like cells and mastlike cells from human bone marrow. J Immunol 1989;142:2424–2429.

    PubMed  CAS  Google Scholar 

  49. Kirshenbaum AS, Goff JP, Kessler SW, et al. Effect of IL-3 and stem cell factor on the appearance of human basophils and mast cells from CD34+ pluripotent progenitor cells. J Immunol 1992;148:772–777.

    PubMed  CAS  Google Scholar 

  50. Saito H, Hatake K, Dvorak AM, et al. Selective differentiation and proliferation of hematopoietic cells induced by recombinant human interleukins. Proc Natl Acad Sci USA 1988;85:2288–2292.

    Article  PubMed  CAS  Google Scholar 

  51. Mayer P, Valent P, Schmidt G, et al. The in vivo effects of recombinant human interleukin-3: demonstration of basophil differentiation factor, histamine-producing activity, and priming of GM-CSF-responsive progenitors in nonhuman primates. Blood 1989;74:613–621.

    PubMed  CAS  Google Scholar 

  52. Valent P, Besemer J, Sillaber C, et al. Failure to detect IL-3-binding sites on human mast cells. J Immunol 1990;145:3432–3437.

    PubMed  CAS  Google Scholar 

  53. Yanagida M, Fukamachi H, Ohgami K, et al. Effects of T-helper 2-type cytokines, interleukin-3 (IL-3), IL-4, IL-5, and IL-6 on the survival of cultured human mast cells. Blood 1995;86:3705–3714.

    PubMed  CAS  Google Scholar 

  54. Furitsu T, Saito H, Dvorak A, et al. Development of human mast cells in vitro. Proc Natl Acad Sci USA 1989;86:10039–10043.

    Article  PubMed  CAS  Google Scholar 

  55. Mitsui H, Furitsu T, Dvorak AM, et al. Development of human mast cells from umbilical cord blood cells by recombinant human and murine c-kit ligand. Proc Natl Acad Sci USA 1993;90:735–739.

    Article  PubMed  CAS  Google Scholar 

  56. Irani AA, Craig SS, Nilsson G, et al. Characterization of human mast cells developed in vitro from fetal liver cells cocultured with murine 3T3 fibroblasts. Immunology 1992;77:136–143.

    PubMed  CAS  Google Scholar 

  57. Irani AM, Nilsson G, Miettinen U, et al. Recombinant human stem cell factor stimulates differentiation of mast cells from dispersed human fetal liver cells Blood 1992;80:3009–3021.

    PubMed  CAS  Google Scholar 

  58. Nilsson G, Miettinen U, Ishizaka T, et al. Interleukin-4 inhibits the expression of Kit and tryptase during stem cell factor-dependent development of human mast cells from fetal liver cells. Blood 1994;84:1519–1527.

    PubMed  CAS  Google Scholar 

  59. Valent P, Spanblochl E, Sperr WR, et al. Induction of differentiation of human mast cells from bone marrow and peripheral blood mononuclear cells by recombinant human stem cell factor/kit-ligand in long-term culture. Blood 1992;80:2237–2245.

    PubMed  CAS  Google Scholar 

  60. Li L, Macpherson JJ, Adelstein S, et al. Conditioned media from a cell strain derived from a patient with mastocytosis induces preferential development of cells that possess high affinity IgE receptors and the granule protease phenotype of mature cutaneous mast cells. J Biol Chem 1995;270:2258–2263.

    Article  PubMed  CAS  Google Scholar 

  61. Galli SJ, Zsebo KM, Geissler EN. The kit ligand, stem cell factor. Adv Immunol 1994;55:1–96.

    Article  PubMed  CAS  Google Scholar 

  62. Li L, Meng X, Krilis SA. Mast cells expressing chymase but not tryptase can be derived by culturing human progenitors in conditioned medium obtained from a human mastocytosis cell strain with c-kit ligand. J Immunol 1996;156:4839–4844.

    PubMed  CAS  Google Scholar 

  63. Irani AA, Craig SS, DeBlois G, et al. Deficiency of the tryptase-positive, chymase-negative mast cell type in gastrointestinal mucosa of patients with defective T lymphocyte function. J Immunol 1987;138:4381–4386.

    PubMed  CAS  Google Scholar 

  64. Weidner N, Austen KF. Ultrastructural and immunohistochemical characterization of normal mast cells at multiple body sites. J Invest Dermatol 1991;96:26s–30s.

    Article  Google Scholar 

  65. Saito H, Ebisawa M, Tachimoto H, et al. Selective growth of human mast cells induced by steel factor, IL-6, and prostaglandin E2 from cord blood mononuclear cells. J Immunol 19961;1557:343–350.

    Google Scholar 

  66. Durand B, Migliaccio G, Yee NS, et al. Long-term generation of norman mast cells in serum-free cultures of CD34+ cord blood cells stimulated with stem cell factor and interleukin-3. Blood 1994;84:3667–3674.

    PubMed  CAS  Google Scholar 

  67. Ratajczak MZ, Luger SM, DeRiel K, et al. Role of the KIT protooncogene in normal and malignant human hematopoiesis. Proc Natl Acad Sci USA 1992;89:1710–1714.

    Article  PubMed  CAS  Google Scholar 

  68. Gilead L, Bibi O, Razin E. Fibroblasts induce heparin synthesis in chondroitin sulfate E containing human bone marrow-derived mast cells. Blood 1990;76:1188–1195.

    CAS  Google Scholar 

  69. Nilsson G, Nilsson К. Effects of interleukin (IL)-13 on immediate-early response gene expression, phenotype and differentiation of human mast cells. Comparison with IL-4. Eur J Immunol 1995;25:870–873.

    Article  PubMed  CAS  Google Scholar 

  70. Butterfield JH, Weiler D, Dewald G, et al. Establishment of an immature mast cell line from a patient with mast cell leukemia. Leuk Res 1988;12:345–355.

    Article  PubMed  CAS  Google Scholar 

  71. Nilsson G, Blom T, Kusche-Gullberg M, et al. Phenotypic characteristic of the human mast cell line HMC-1. Scand J Immunol 1994;39:489–498.

    Article  PubMed  CAS  Google Scholar 

  72. Volk-Platzer B, Valent P, Radaszkiewicz T, et al. Recombinant human interleukin 3 induces proliferation of inflammatory cells and keratinocytes in vivo. Lab Invest 1991;64:557–566.

    Google Scholar 

  73. Galli SJ, Iemura A, Garlick DS, et al. Reversible expansion of primate mast cell populations in vivo by stem cell factor. J Clin Invest 1993;91:148–152.

    Article  PubMed  CAS  Google Scholar 

  74. Costa JJ, Demetri GD, Harrist TJ, et al. Recombinant human stem cell factor (Kit ligand) promotes human mast cell and melanocyte hyperplasia and functional activation in vivo. J Exp Med 1996;183:2681–2686.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Li, L., Zhang, XT., Krilis, S.A. (1999). Factors That Affect Human Mast Cell and Basophil Growth. In: Razin, E., Rivera, J. (eds) Signal Transduction in Mast Cells and Basophils. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2154-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2154-8_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7435-3

  • Online ISBN: 978-1-4612-2154-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics