Skip to main content

Early-Response Genes in Mast Cell Activation

  • Chapter
Signal Transduction in Mast Cells and Basophils
  • 102 Accesses

Abstract

Cytokines and lymphokines have been implicated in having a vital influence on the regulation, maturation, activation, proliferation, and specific functions of mast cells. The intercellular events resulting from mast cell-cytokine interactions are of considerable interest for the understanding and ultimate management of mast cell-associated disease states and for identifying new targets for drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nechushtan H, Razin E. Regulation of mast cell growth and proliferation. Crit Rev in Oncol Hematol 1996;23:131–150.

    Article  CAS  Google Scholar 

  2. Boulay JL, Paul WE. The interleukin-4 family of lymphokines. Curr Opin Immunol 1992;4:294–298.

    Article  PubMed  CAS  Google Scholar 

  3. Kitamura Y, Go S. Decreased production of mast cells in S1/S1d anemic mice. Blood 1979;53:492–497.

    PubMed  CAS  Google Scholar 

  4. Kitamura Y, Go S, Hatanaka K. Decrease of mast cells in W/Wv mice and their increase by bone marrow transplantation. Blood 1978;52:447–452.

    PubMed  CAS  Google Scholar 

  5. Chaikin E, Ziltener H, Razin E. Protein kinase C plays an inhibitory role in IL-3 and IL-4 mediated mast cell proliferation. J Biol Chem 1990;265:22109–22116.

    PubMed  CAS  Google Scholar 

  6. Nishizuka Y. Studies and prespectives of protein kinase C. Science 1992;258:607–614.

    Article  PubMed  CAS  Google Scholar 

  7. Chaikin E, Hakeem I, Razin E. The incapability of IL-4 to induce AP-1 activity in murine mast cells. Int Arch Allergy Immunol 1995;107:57–59.

    Article  PubMed  CAS  Google Scholar 

  8. Galli SJ. New concepts about the mast cell. N Engl J Med 1993;328:257–256.

    Article  PubMed  CAS  Google Scholar 

  9. Angel P, Karin M. The role of Jun, Fos and the AP-1 complex in cell proliferation and transformation. Biochim Biophys Acta 1991;1072:129–157.

    PubMed  CAS  Google Scholar 

  10. Tsai M, Tarn SY, Galli SJ. Distinct patterns of early response gene expression and proliferation in mouse mast cells stimulated by stem cell factor, interleukin-3, or IgE and antigen. Eur J Immunol 1993;23:867–872.

    Article  PubMed  CAS  Google Scholar 

  11. Chaikin E, Hakeem I, Razin E. Enhancement of interleukin-3-dependent mast cell proliferation by supression of c-jun expression. J Biol Chem 1994;269:8498–8503.

    PubMed  CAS  Google Scholar 

  12. Baranes D, Razin E. PKC regulates proliferation of mast cells and the expression of Fos and Jun proto-oncogene mRNAs during activation by IgE-Ag or calcium ionophore A23187. Blood 1991;78:2354–2366.

    PubMed  CAS  Google Scholar 

  13. Lewin I, Nechushtan H, Qingen K, Razin E. Regulation of AP-1 expression and activity in antigen-stimulated mast cells: the role played by protein kinase C and the possible involvement of Fos interacting protein. Blood 1993;82:3745–3751.

    PubMed  CAS  Google Scholar 

  14. Lewin I, Jacob-Hirsch J, Zang ZC, et al. Aggregation of the FcεRI in mast cells induces the synthesis of fos-interacting protein and increases its DNA-binding activity: the dependency on PKC-β. J Biol Chem 1996;271:1514–1519.

    Article  PubMed  CAS  Google Scholar 

  15. Sirito M, Lin Q, Maity T, Sawadogo M. Ubiquitous expression of the 43- and 44-kDa forms of transcription factor USF in mammalian cells. Nucleic Acids Res 1994;22:427–429.

    Article  PubMed  CAS  Google Scholar 

  16. Vallet SV, Henrion AA, Bucchini D, et al. Glucose-dependent liver gene expression in up- stream stimulatory factor 2 -/- mice. J Biol Chem 1997;272:21944–21949.

    Article  PubMed  CAS  Google Scholar 

  17. Zhang ZC, Nechushtan H, Jacob-Hirsch J, Avni D, Meyuhas O, Razin E. Growth-dependent and PKC-mediated translational regulation of the upstream stimulating factor 2 (USF2) mRNA in hematopoietic cells. Oncogene 1997;16:763–769.

    Article  Google Scholar 

  18. Luo X, Sawadogo M. Antiproliferative properties of the USF family of helix-loop-helix transcription factors. Proc Natl Acad Sci USA 1996;93:1308–1311.

    Article  PubMed  CAS  Google Scholar 

  19. Ebi Y, Kasugai T, Scino Y, Onoue H, Kanemoto T, Kitamura Y. Mechanism of mast cell deficiency in mutant mice of mi/mi genotype: an analysis by co-culture of mast cells and fibroblasts. Blood 1990;75:1247–1258.

    PubMed  CAS  Google Scholar 

  20. Hodgkinson CA, Moore KJ, Nakayama A, Steingrimsson E, Copeland NG, Jenkins NA. Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell 1993;74:395–407.

    Article  PubMed  CAS  Google Scholar 

  21. Hughes MJ, Lingrel JB, Krakowsky JM, Anderson KP. A DNA insertional mutation results in microphthalmia in transgenic mice. J Biol Chem 1993;268:20687–20699.

    PubMed  CAS  Google Scholar 

  22. Jippo-Kanemoto T, Adachi S, Ebi Y, et al. BALB/3T3 fibroblast-conditioned medium attracts cultured mast cells derived from W/W but not from mi/mi mutant mice, both of which are deficient in mast cells. Blood 1992;80:1933–1946.

    PubMed  CAS  Google Scholar 

  23. Jippo T, Ushio H, Hirota S, et al. Poor response of cultured mast cells derived from mi/mi mutant mice to nerve growth factor. Blood 1994;84:2977–2989.

    PubMed  CAS  Google Scholar 

  24. Nechushtan H, Zhang ZC, Razin E. Microphthalmia (mi) in murine mast cells: regulation of its stimuli-mediated expression on the translational level. Blood 1997;89:2999–3008.

    PubMed  CAS  Google Scholar 

  25. Rodewald HR, Dessing M, Dvorak AN, Galli SJ. Identification of a committed precursor for the mast cell lineage. Science 1996;271:881–885.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Nechushtan, H., Razin, E. (1999). Early-Response Genes in Mast Cell Activation. In: Razin, E., Rivera, J. (eds) Signal Transduction in Mast Cells and Basophils. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2154-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2154-8_23

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7435-3

  • Online ISBN: 978-1-4612-2154-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics