Adeno—Associated Virus (AAV) Vectors for Musculoskeletal Gene Transfer

  • Xiao Xiao
  • Ryan Pruchnic
  • Juan Li
  • Johnny Huard
Part of the Methods in Bioengineering book series (MB)


Effective gene delivery techniques into musculoskeletal tissues for gene therapy will revolutionize molecular medicine and pave the way for advances in orthopaedic treatment. However, numerous gene transfer approaches, including direct (in vivo), indirect (ex vivo), and systemic delivery of nonviral and viral vectors, have been hampered by limitations such as low transfection efficiency, immunologic responses, cytotoxic effects, and maturation-dependent factors that preclude the vector from transducing postmitotic and/or mature tissues. As a result, general application of gene therapy for treatments of muscular diseases and orthopedic injuries and repair will not be realized until improvement is made in vector development (see Chapter 14). Recent progress in the development adeno-associated virus (AAV), a small, nonpathogenic human DNA virus, has shed new light on this frontier.


Gene Transfer Injured Muscle Site Specific Integration Mediate Gene Transfer Limb Girdle Muscular Dystrophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acsadi, G., Dickson, G., Love, D.L., Jani, A., Walsh, F.S., Gurusinghe, A., Wolff, J.A., and Davies, K.E. 1991. Human dystrophin expression in mdx mice after intramuscular injection of DNA constructs. Nature 352:815–18.PubMedCrossRefGoogle Scholar
  2. Acsadi, G., Jani, A., Massie, B., Simoneau, M., Holland, P., Blaschuk, K., and Karpati, G. 1994. A differential efficiency of adenovirus mediated in vivo gene transfer into skeletal muscle cells of different maturity. Hum Mol Genet 3:579–84.PubMedCrossRefGoogle Scholar
  3. Acsadi, G., Lochmueller, H., Jani, A., Huard, J., Massie, B., Prescott, S., Simoneau, M., Petrof, B., and Karpati, G. 1996. Dystrophin expression in muscles of mdx mice after adenovirus mediated in vivo gene transfer. Hum Gene Ther 7:129–40.PubMedCrossRefGoogle Scholar
  4. Afione, S.A., Conrad, C.K., Kearns, W.G., Chunduru, S., Adams, R., Reynolds, T.C., Guggino, W.B., Cutting, G.R., Carter, B.J., and Flotte, T.R. 1996. In vivo model of adeno-associated virus vector persistence and rescue. J Virol 70:3235–41.PubMedGoogle Scholar
  5. Alexander, I.E., Russell, D.W., and Miller, A.D. 1997. Transfer of contaminants in adeno-associated virus vector stocks can mimic transduction and lead to artifactual results. Hum Gene Ther 8:1911–20.PubMedCrossRefGoogle Scholar
  6. Aronen, J.G. and Chronister, R. 1992. Quadriceps contusions: hastening the return to play. Phys Sports Med 20:130–6.Google Scholar
  7. Barr, E. and Leiden, J.M. 1991. Systemic delivery of recombinant proteins by genetically modified myoblasts. Science 254:1507–9.PubMedCrossRefGoogle Scholar
  8. Barton-Davis, E.R., Shoturma, D.I., Musaro, A., Rosenthal, N., and Sweeney, H.L. 1998. Viral mediated expression of insulin-like growth factor I blocks the aging related loss of skeletal muscle function. Proc Natl Acad Sci USA 95:15603–7PubMedCrossRefGoogle Scholar
  9. Berns, K.I. 1996. Parvoviridae: the viruses and their replication. In B.N. Fields, D.M. Knipe, and P.M. Howley (eds.). Philadelphia/New York: Lippincott-Raven.Google Scholar
  10. Berns, K.I. and Bohenzky, R.A. 1987. Adeno-associated viruses: an update. [review]. Advances in Virus Research 32:243–306.PubMedCrossRefGoogle Scholar
  11. Berns, K.I. and Linden, R.M. 1995. The cryptic life style of adeno-associated virus. Bioessays 17:237–45.PubMedCrossRefGoogle Scholar
  12. Chambers, R.L. and McDermott, J.C. 1996. Molecular basis of skeletal muscle regeneration. Can J Appl Physiol 21:155–84.PubMedCrossRefGoogle Scholar
  13. Clark, K.R., Sferra, T.J., and Johnson, P.R. 1997. Recombinant adeno-associated viral vectors mediate long-term transgene expression in muscle. Hum Gene Ther 8:659–69.PubMedCrossRefGoogle Scholar
  14. Clark, K.R., Voulgaropoulou, F., Fraley, D.M., and Johnson, P.R. 1995. Cell lines for the production of recombinant adeno-associated virus. Hum Gene Ther 6:1329–41.PubMedCrossRefGoogle Scholar
  15. Davis, H.L., Demeneix, B.A., Quantin, B., Coulombe, J., and Whalen, R.G. 1993. Plasmid DNA is superior to viral vectors for direct gene transfer into adult mouse skeletal muscle. Hum Gene Ther 4:733–40.PubMedCrossRefGoogle Scholar
  16. Davis, H.L., Whalen, R.G., and Demeneix, B.A. 1993. Direct gene transfer into skeletal muscle in vivo: factors affecting efficiency of transfer and stability of expression. Hum Gene Ther 4:151–9.PubMedCrossRefGoogle Scholar
  17. Dhawan, J., Pan, L.C., Pavlath, G.K., Travis, M.A., Lanctot, A.M., and Blau, H.M. 1991. Systemic delivery of human growth hormone by injection of genetically engineered myoblasts. Science 254:1509–12.PubMedCrossRefGoogle Scholar
  18. Doh, S.G., Vahlsing, J., Hartikka, J., Liang, X., and Manthorpe, M. 1997. Spatial-temporal patterns of gene expression in mouse skeletal muscle after injection of LacZ Plasmid DNA. Gene Ther 4:648–63.PubMedCrossRefGoogle Scholar
  19. Dunckley, M.G., Davies, K.E., Walsh, F.S., Morris, G.E., and Dickson, G. 1992. Retroviral mediated transfer of a dystrophin minigene into mdx mouse myoblasts in vitro. FEBS Lett 296:128–34.PubMedCrossRefGoogle Scholar
  20. Feero, W.G., Rosenblatt, J.D., Huard, J., Watkins, S.C., Epperly, M., Clemens, P.R., Kochanek, S., Glorioso, J.C., Partridge, T.A., and Hoffman, E.P. 1997. Viral gene delivery to skeletal muscle: insights on maturation dependent loss of fiber infectivity for adenovirus and herpes simplex type 1 viral vectors. Hum Gene Ther 8:371–80.PubMedCrossRefGoogle Scholar
  21. Ferrari, F.K., Xiao, X., McCarty, D., and Samulski, R.J. 1997. New developments in the generation of Ad free, high titer rAAV gene therapy vectors. Nat Med 3:1295–7.PubMedCrossRefGoogle Scholar
  22. Fisher, K.J., Jooss, K., Alston, J., Yang, Y., Haecker, S.E., High, K., Pathak, R., Raper, S.E., and Wilson, J.M. 1997. Recombinant adeno-associated virus for muscle directed gene therapy. Nat Med 3:306–12.PubMedCrossRefGoogle Scholar
  23. Fisher-Adams, G., Wong Jr., K.K., Podsakoff, G., Forman, S.J., and Chatterjee, S. 1996. Integration of adeno-associated virus vectors in CD34+ human hematopoietic progenitor cells after transduction. Blood 88:492–504.PubMedGoogle Scholar
  24. Flannery, J.G., Zolotukhin, S., Vaquero, M.I., La Vail, M.M., Muzyczka, N., and Hauswirth, W.W. 1997. Efficient photoreceptor targeted gene expression in vivo by recombinant adeno-associated virus. Proc Natl Acad Sci USA 94:6916–21.PubMedCrossRefGoogle Scholar
  25. Flotte, T.R., Afione, S.A., Conrad, C., McGrath, S.A., Solow, R., Oka, H., Zeitlin, P.L., Guggino, W.B., and Carter, B.J. 1993. Stable in vivo expression of the cystic fibrosis transmembrane conductance regulator with an adeno-associated virus vector. Proc Natl Acad Sci USA. 90:10613–17.PubMedCrossRefGoogle Scholar
  26. Flotte, T.R. and Carter, B.J. 1995. Adeno-associated virus vectors for gene therapy, [review]. Gene Ther 2:357–62.PubMedGoogle Scholar
  27. Giraud, C., Winocour, E., and Berns, K.I. 1995. Recombinant junctions formed by site specific integration of adeno-associated virus into an episome. J Virol 69:6917–24.PubMedGoogle Scholar
  28. Goodman, S., Xiao, X., Donahue, R.E., Moulton, A., Miller, J., Walsh, C., Young, N.S., Samulski, R.J., and Nienhuis, A.W. 1994. Recombinant adeno-associated virus mediated gene transfer into hematopoietic progenitor cells [published erratum appears in 1995 Blood 1:85(3):862]. Blood 84:1492–500.PubMedGoogle Scholar
  29. Grossman, Z., Mendelson, E., Brok-Simoni, F., Mileguir, F., Leitner, Y., Rechavi, G., and Ramot, B. 1992. Detection of adeno-associated virus type 2 in human peripheral blood cells. J Gen Virol 73:961–6.PubMedCrossRefGoogle Scholar
  30. Grounds, M.D. 1991. Towards understanding skeletal muscle regeneration. Path Res Pract 187:1–22.PubMedGoogle Scholar
  31. Huard, J., Akkaraju, G., Watkins, S.C., Cavalcoli, M.P., and Glorioso, J.C. 1997. LacZ gene transfer to skeletal muscle using a replication defective herpes virus type 1 mutant vector. Hum Gene Ther 8:439–52.PubMedCrossRefGoogle Scholar
  32. Huard, J., Feero, W.G., Watkins, S.C., Hoffman, E.P., Rosenblatt, D.J., and Glorioso, J.C. 1996. The basal lamina is a physical barrier to herpes simplex virus mediated gene delivery to mature muscle fibers. J Virol 70:8117–23.PubMedGoogle Scholar
  33. Huard, J., Krisky, D., Oligino, T., Marconi, P., Day, C.S., Watkins, S.C., and Glorioso, J.C. 1997. Gene transfer to muscle using herpes simplex virus based vectors. Neuromusc Disor 7:1–15.CrossRefGoogle Scholar
  34. Jackson, D.W. and Feagin, J.A. 1973. Quadriceps contusions in young athletes: relation of severity of injury to treatment and prognosis. J Bone Joint Surg (Am) 55A:95–105.Google Scholar
  35. Jooss, K., Yang Y., Fisher, K.J., and Wilson, J.M. 1998. Transduction of dendritic cells by DNA viral vectors directs the immune response to transgene products in muscle fibers. J Virol 72:4212–23.PubMedGoogle Scholar
  36. Kalimo, H., Rantanen, J., and Jarvinen, M. 1997. Muscle injuries in Sports. Balliere’s Clin Orthop 2(l):l-24.Google Scholar
  37. Kaplitt, M.G., Leone, P., Samulski, R.J., Xiao, X., Pfaff, D.W., O’Malley, K.L., and During, M.J. 1994. Long term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nat Genet 8:148–54.PubMedCrossRefGoogle Scholar
  38. Kaplitt, M.G., Xiao, X., Samulski, R.J., Li, J., Ojamaa, K., Klein, I.L., Makimura, H., Kaplitt, M.J., Strumpf, R.K., and Diethrich, E.B. 1996. Long term gene transfer in porcine myocardium after coronary infusion of an adeno-associated virus vector. Ann Thorac Surg 62:1669–76.PubMedCrossRefGoogle Scholar
  39. Kearns, W.G., Afione, S.A., Fulmer, S.B., Pang, M.C., Erikson, D., Egan, M., Landrum, M.J., Flotte, T.R., and G.R. Cutting, T.R. 1996. Recombinant adeno-associated virus (AAV-CFTR) vectors do not integrate in a site specific fashion in an immortalized epithelial cell line. Gene Ther 3:748–55.PubMedGoogle Scholar
  40. Kessler, P.D., Podsakoff, G.M., Chen, X., McQuiston, S.A., Colosi, P.C., Matelis, L.A., Kurtzman, G.J., and Byrne, B.J. 1996. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc Natl Acad Sci USA 93:14082–7.PubMedCrossRefGoogle Scholar
  41. Koeberl, D.D., Alexander, I.E., Haibert, C.L., Russell, D.W., and Miller, A.D. 1997. Persistent expression of human clotting factor IX from mouse liver after intravenous injection of adeno-associated virus vectors. Proc Natl Acad Sci USA 94:1426–31.PubMedCrossRefGoogle Scholar
  42. Kotin, R.M. 1994. Prospects for the use of adeno-associated virus as a vector for human gene therapy. Hum Gene Ther 5:793–801.PubMedCrossRefGoogle Scholar
  43. Kotin, R.M., Siniscalco, M., Samulski, R.J., Zhu, X.D., Hunter, L., Laughlin, C.A., McLaughlin, S., Muzyczka, N., Rocchi, M., and Berns, K.I. 1990. Site specific integration by adeno-associated virus Proc Natl Acad Sci USA 87:2211–5.PubMedCrossRefGoogle Scholar
  44. Li, J., Dressman, D.,Tsao, Y.P., Sakamoto, A., Hoffman, E.P., and Xiao, X. 1999. Gene Ther 6:74–82.PubMedCrossRefGoogle Scholar
  45. Li, J., Samulski, R.J., and Xiao, X. 1997. Role for highly regulated rep gene expression in adeno-associated virus vector production. J Virol 71:5236–43.PubMedGoogle Scholar
  46. Monahan, P.E., Samulski, R.J., Tazelaar, J., Xiao, X., Nichols, T.C., Bellinger, D.A., Read, M.S., and Walsh, C.E. 1998. Direct intramuscular injection with recombinant AAV vectors results in sustained expression in a dog model of hemophilia. Gene Ther 5:40–9.PubMedCrossRefGoogle Scholar
  47. Muzyczka, N. 1992. Use of adeno-associated virus as a general transduction vector for mammalian cells. Curr Topics Micro Immunol 158:97–129.Google Scholar
  48. Nigro, V., Okazaki, Y., Belsito, A., Piluso, G., Matsuda, Y., Politano, L., Nigro, G., Ventura, C., Abbondanza, C., Molinari, A.M., Acampora, D., Nishimura, M., Hayashizaki, Y., and Puca, G.A. 1997. Identification of the Syrian hamster cardiomyopathy gene. Hum Mol Gen 6:601–7.PubMedCrossRefGoogle Scholar
  49. Peel, A.L., Zolotukhin, S., Schrimsher, G.W., Muzyczka, N., and Reier, P.J. 1997. Efficient transduction of green fluorescent protein in spinal cord neurons using adeno-associated virus vectors containing cell type specific promoters. Gene Ther 4:16–24.PubMedCrossRefGoogle Scholar
  50. Ponnazhagan, S., Erikson, D., Kearns, W.G., Zhou, S.Z., Nahreini, P., Wang, X.S., and Srivastava, A. 1997. Lack of site specific integration of the recombinant adeno-associated virus 2 genomes in human cells. Hum Gene Ther 8:275–84.PubMedCrossRefGoogle Scholar
  51. Ponnazhagan, S., Mukherjee, P., Yoder, M.C., Wang, X.S., Zhou, S.Z., Kaplan, J., Wadsworth, S., and Srivastava, A. 1997. Adeno-associated virus 2 mediated gene transfer in vivo: organ-tropism and expression of transduced sequences in mice. Gene 190:203–10.PubMedCrossRefGoogle Scholar
  52. Quantin, B., Perricaudet, L.D., Tajbakhsh, S., and Mandel, J.L. 1992. Adenovirus as an expression vector in muscle cells in vivo. Proc Natl Acad Sci USA 89: 2581–4.PubMedCrossRefGoogle Scholar
  53. Ragot, T., Vincent, M., Chafey, P., Vigne, E., Gilgenkrantz, H., Couton, B., Cartaud, J., Briand, B., Kaplan, J.C., Perricaudet, M., and Kahn, A. 1993. Efficient adenovirus mediated transfer of a human mini dystrophin gene to skeletal muscle of mdx mice. Nature 361:647–50.PubMedCrossRefGoogle Scholar
  54. Ryan, J.B., Wheeler, J.H., Hopkinson, W.J., Arciero, R.A., and Kolakowski, K.R. 1991. Quadriceps contusions—West point update. Am J Sports Med 19:299–304.PubMedCrossRefGoogle Scholar
  55. Sakamoto, A., Ono, K., Abe, M., Jasmin, G., Eki, T., Murakami, Y., Masaki, T., Toyo-oka, T., and Hanaoka, F. 1997. Both hypertrophic and dilated cardiomyopathies are caused by mutation of the same gene, δ-sarcoglycan, in hamster: an animal model of disrupted dystrophin associated glycoprotein complex. Proc Natl Acad Sci USA 94:13873–8.PubMedCrossRefGoogle Scholar
  56. Salvatori, G., Ferrari, G., Messogiorno, A., Servidel, S., Colette, M., Tonalli, P., Giarassi, R., Cosso, G., and Mavillo, F. 1993. Retroviral mediated gene transfer into human primary myogenic cells lead to expression in muscle fibers in vivo. Hum Gene Ther 713–23.Google Scholar
  57. Samulski, R.J. 1993. Adeno-associated virus: integration at a specific chromosomal locus. Curr Opin Genet Dev 3:74–80.PubMedCrossRefGoogle Scholar
  58. Samulski, R.J., Chang, L.S., and Shenk T. 1989. Helper free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression. J Virol 63:3822–8.PubMedGoogle Scholar
  59. Samulski, R.J., Zhu, X., Xiao, X., Brook, J.D., Housman, D.E., Epstein, N., and Hunter, L.A. 1991. Targeted integration of adeno-associated virus (AAV) into human chromosome 19 [published erratum appears in 1992 EMBO J 11(3):1228].EMBO J 10:3941–50.PubMedGoogle Scholar
  60. Snyder, R.O., Miao, C.H., Patijn, G.A., Spratt, S.K., Danos, O., Nagy, D., Gown, A.M., Winther, B., Meuse, L., Cohen, L.K., Thompson, A.R., and Kay, M.A. 1997. Persistent and therapeutic concentrations of human factor IX in mice after hepatic gene transfer of recombinant AAV vectors. Nat Genet 16:270–6.PubMedCrossRefGoogle Scholar
  61. Snyder, R.O., Xiao, X., and Samulski, R.J. 1996. Production of recombinant adeno-asociated viral vectors. In N. Dracopoli, J. Haines, B. Krof, D. Moir, C. Seidman, and J.S. Seidman, D. (eds.), Current protocols in Human Genetics. 12.1.1–12.3.23, New York: John Wiley & Sons.Google Scholar
  62. Tamayose, K., Hirai, Y., and Shimada, T. 1996. A new strategy for large scale preparation of high titer recombinant adeno-associated virus vectors by using packaging cell lines and sulfonated cellulose column chromatography. Hum Gene Ther 7:507–13.PubMedCrossRefGoogle Scholar
  63. Tripathy, S.K., Black, H.B., Goldwasser, E., and Leiden, J.M. 1996. Immune responses to transgene encoded proteins limit the stability of gene expression after injection of replication defective adenovirus vectors. Nat Med 2:545–50.PubMedCrossRefGoogle Scholar
  64. van Deutekom, J.C.T., Floyd, S.S., Booth, D.K., Oligino, T., Krisky, D., Marconi, P., Glorioso, J.C., and Huard, J. 1998. Implications of maturation for viral gene delivery to skeletal muscle. Neuromusc Disord 8:135–48.PubMedCrossRefGoogle Scholar
  65. van Deutekom, J.C.T., Hoffman, E.P., and Huard, J. 1998. Muscle maturation: implications for gene therapy. Mol Med Today 5:214–20.CrossRefGoogle Scholar
  66. Verma, I.M. and Somia, N. 1997. Gene therapy—promises, problems and prospects [news]. Nature 389:239–42.PubMedCrossRefGoogle Scholar
  67. Vincent, M., Ragot, T., Gilgenkrantz, H., Couton, D., Chafey, P., Gregoire, A., Briand, P., Kaplan, J.C., Kahn, A., and Perricaudet, M. 1993. Long term correction of mouse dystrophic degeneration by adenovirus mediated transfer of a mini dystrophin gene. Nat Genet 5:130–4.PubMedCrossRefGoogle Scholar
  68. Vitiello, L., Chonn, A., Wasserman, J.D., Duff, C., and Worton, R.G. 1996. Condensation of plamid DNA with polylysine improves liposome mediated gene transfer into established and primary muscle cells. Gene Ther 3:369–404.Google Scholar
  69. Walsh, C.E., Liu, J.M., Xiao, X., Young, N.S., Nienhuis, A.W., and Samulski, R.J. 1992. Regulated high level expression of a human gamma-globin gene introduced into erythroid cells by an adeno-associated virus vector. Proc Natl Acad Sci USA 89:7257–61.PubMedCrossRefGoogle Scholar
  70. Weitzman, M.D., Kyostio, S.R., Kotin, R.M., and Owens, R.A. 1994. Adeno-associated virus (AAV) rep proteins mediate complex formation between AAV-DNA and its integration site in human DNA. Proc Natl Acad Sci USA 91:5808–12.PubMedCrossRefGoogle Scholar
  71. Wolff, J.A., Ludtke, J.J., Acsadi, G., Williams, P., and Jani, A. 1992. Long term persistance of plasmid DNA and foreign gene expression in mouse muscle. Hum Mol Genet 1:363–9.PubMedCrossRefGoogle Scholar
  72. Xiao, W., Berta, S.C., Lu, M.M., Tazelaar, J., and Wilson, J.M. 1998. Adeno-associated virus as a vector for liver directed gene therapy. J Virol 72:10222–6.PubMedGoogle Scholar
  73. Xiao, X., DeVlaminick, W., and Monahan, J. 1993. Adeno-associated virus (AAV) vectors for gene transfer. Advanced Drug Delivery Review 12:201–15.CrossRefGoogle Scholar
  74. Xiao, X., Li, J., McCown, T.J., and Samulski, R.J. 1997. Gene transfer by adeno-associated virus vectors into the central nervous system. Exper Neurol 144:113–24.CrossRefGoogle Scholar
  75. Xiao, X., Li, J., and Samulski, R.J. 1996. Efficient long term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J Virol 70:8098–108.PubMedGoogle Scholar
  76. Xiao, X., Li, J., and Samulski, R.J. 1998. Production of high titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 72:2224–32.PubMedGoogle Scholar
  77. Xiao, X., McCown, T.J., Li, J., Breese, G.R., Morrow, A.L., and Samulski, R.J. 1997. Adeno-associated virus (AAV) vector antisense gene transfer in vivo decreases GABA(A) alpha1 containing receptors and increases inferior collicular seizure sensitivity. Brain Res 756:76–83.PubMedCrossRefGoogle Scholar
  78. Xiao, X., Xiao, W., Li, J., and Samulski, R.J. 1997. A novel 165 base-pair terminal repeat sequence is the sole cis requirement for the adeno-associated virus life cycle. J Virol 71:941–8.PubMedGoogle Scholar
  79. Yang, Y., Li, Q., Ertl, H.C., and Wilson, J.M. 1995. Cellular and humoral immune responses to viral antigens create barriers to lung directed gene therapy with recombinant adenoviruses. J Virol 69:2004–15.PubMedGoogle Scholar
  80. Yang, Y. Nunes, F.A., Berencsi, K., Furth, E.E., Gonczol, E., and Wilson, J.M. 1994. Cellular immunity to viral antigens limits E1 deleted adenoviruses for gene therapy. Proc Natl Acad Sci USA 91:4407–11.PubMedCrossRefGoogle Scholar
  81. Yang, Y. and Wilson, J.M. 1995. Clearance of adenovirus infected hepatocytes by MHC class I restricted CD4+ CTLs in vivo. J Immunology 155:2564–70.Google Scholar
  82. Yurchenco, P.D. 1990. Assembly of basement membranes. Ann New York Acad Sci 580:195–213.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 2000

Authors and Affiliations

  • Xiao Xiao
  • Ryan Pruchnic
  • Juan Li
  • Johnny Huard

There are no affiliations available

Personalised recommendations