Colloidal dispersions consist of solid or fluid particles in a solvent. The size of these particles is typically in the mesoscopic range (like Brownian particles) that is much greater than the size of the solvent, thus differentiating these dispersions from molecular solutions. Understanding colloidal dynamics is important in the connection to the rheology of dispersions. Rheology is the science of the flow and deformation of matter, and it exhibits on the one hand by Newtonian viscous fluids and on the other hand by Hookean elastic solids. Most colloidal dispersions exhibit viscoelastic behavior that is intermediate between these two extremes.


Shear Rate Fractal Dimension Colloidal Particle Percolation Threshold Colloidal Dispersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Addison-Wesley, Reading, MA, 1959).Google Scholar
  2. 2a.
    A. Einstein, Ann. Phys. 17, 549 (1905).CrossRefGoogle Scholar
  3. 2b.
    A. Einstein, Ann. Phys. 19, 289 (1906).CrossRefGoogle Scholar
  4. 2c.
    A. Einstein, Ann. Phys. 34, 591 (1911).CrossRefGoogle Scholar
  5. 3.
    T. L. Hill, Statistical Mechanics (Dover, New York, 1987).Google Scholar
  6. 4.
    A. K. Doolittle, J. Appl. Phys. 22, 1471 (1951).ADSCrossRefGoogle Scholar
  7. 5.
    T. S. Chow, Adv. Polym. Sci. 103, 149 (1992).CrossRefGoogle Scholar
  8. 6.
    T. S. Chow, Phys. Rev. E 48, 1977 (1993).ADSCrossRefGoogle Scholar
  9. 7.
    R. Buscali, J. Chem. Soc, Faraday Trans., 87, 1365 (1991).CrossRefGoogle Scholar
  10. 8.
    G. B. Batcherler, J. Fluid Mech. 83, 97 (1977).MathSciNetADSCrossRefGoogle Scholar
  11. 9.
    G. B. Batcherler and J. T. Green, J. Fluid Mech. 56, 401 (1972).ADSCrossRefGoogle Scholar
  12. 10.
    I. M. Krieger, Adv. Colloid Interface Sci. 3, 111 (1972).CrossRefGoogle Scholar
  13. 11.
    C. G. de Kruif, E. M. F. van Iersel, A. Vrij, and W. B. Russel, J. Chem. Phys. 83, 4717 (1985).ADSCrossRefGoogle Scholar
  14. 12.
    J. C. Van der Werff and C. G. de Kruif, J. Rheol. 33, 421 (1989).CrossRefGoogle Scholar
  15. 13.
    W. B. Russel, D. A. Savilie, and W. R. Schowalter, Colloidal Dispersions (Cambridge University Press, New York, 1989).Google Scholar
  16. 14.
    R. P. Feynman, Statistical Mechanics (Benjamin, Reading, MA, 1972).Google Scholar
  17. 15.
    B. Cichocki and B. U. Felderhof, Phys. Rev. A 46, 7723 (1992).ADSCrossRefGoogle Scholar
  18. 16.
    T. S. Chow, Phys. Rev. E 50, 1274 (1994).ADSCrossRefGoogle Scholar
  19. 17.
    J. D. Green, P. F. Buff, and M. S. Green, J. Chem. Phys. 17, 988 (1949).ADSCrossRefGoogle Scholar
  20. 18.
    G. Rickayzen, Green’s Functions and Condensed Matter (Academic, New York, 1980).MATHGoogle Scholar
  21. 19.
    C. Kittel, Introduction to Solid State Physics, 6th ed. (Wiley, New York, 1986).Google Scholar
  22. 20.
    P. D’Haene, G. G. Fuller, and J. Mewis, Theoretical and Applied Rheology, Vol. 2, P. Moldenaers and R. Keunings, editors (Elsevier, Amsterdam, 1992).Google Scholar
  23. 21.
    R. Buscali, J. W. Goodwin, M. W. Hawkins, and R. H. Ottewill, J. Chem. Soc, Faraday Trans. I, 78, 2872 (1982).Google Scholar
  24. 22.
    J. E. Moyal, Royal Stat. Soc. B 11, 150 (1949).MathSciNetMATHGoogle Scholar
  25. 23.
    M. Abramowitz and I. A. Stegun (Eds.), Handbook of Mathematical Functions (U. S. GPO, Washington, DC, 1964).MATHGoogle Scholar
  26. 24.
    J. C. Van der Werff, C. G. de Kruif, C. Blom, and J. Mellema, Phys. Rev. A 39, 795 (1989).ADSCrossRefGoogle Scholar
  27. 25.
    R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, Vol. 2, 2nd ed. (Wiley, New York, 1987).Google Scholar
  28. 26.
    M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Clarendon, Oxford 1986).Google Scholar
  29. 27.
    T. S. Chow, J. Phys. Condens. Matter 8, 8145 (1996).ADSCrossRefGoogle Scholar
  30. 28.
    L. Vekas, private comunication (1998).Google Scholar
  31. 29.
    R. Buscali, Theoretical and Applied Rheology, Vol. 2, P. Moldenaers and R. Keunings, editors (Elsevier, Amsterdam, 1992).Google Scholar
  32. 30.
    H. H. Winter, Mater. Res. Soc. Bull. 16(8), 44 (1991).MathSciNetGoogle Scholar
  33. 31.
    H. E. Stanley, F. Family, and H. Gould, J. Poly. Sei., Polym. Symp. 73, 19 (1985).CrossRefGoogle Scholar
  34. 32.
    T. A. Witten, Jr., and L. M. Sander, Phys. Rev. 47, 1400 (1981).Google Scholar
  35. 33.
    P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell, Ithaca, 1979).Google Scholar
  36. 34.
    H. E. Stanley, “Critical phenomena,” in Encyclopedia of Polymer Science, Vol. 4, 2nd ed. (Wiley, New York, 1986).Google Scholar
  37. 35.
    P. Meakin, Phys. Rev. B 27, 604 (1983).MathSciNetADSGoogle Scholar
  38. 36.
    M. E. Cates and S. F. Edwards, Proc. R. Soc. A 395, 226 (1984).CrossRefGoogle Scholar
  39. 37.
    J. D. Ferry, Viscoelastic Properties of Polymers, 3rd ed. (Wiley, New York, 1980).Google Scholar
  40. 38.
    J. E. Martin, D. Adolf, and J. P. Wilcoxon, Phys. Rev. Lett, 61, 2620 (1988).ADSCrossRefGoogle Scholar
  41. 39.
    D. Stauffer, Introduction to Percolation Theory (Taylor and Francis, London, 1985).MATHCrossRefGoogle Scholar
  42. 40.
    T. S. Chow, Macromol. Theory Simul. 7, 257 (1998).CrossRefGoogle Scholar
  43. 41.
    B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, New York, 1982).MATHGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 2000

Authors and Affiliations

  • T. S. Chow
    • 1
  1. 1.Xerox Research and TechnologyWebsterUSA

Personalised recommendations