Skip to main content

Soft Computing Techniques for Evaluation and Control of Human Performance

  • Chapter
Biomechanics and Neural Control of Posture and Movement

Abstract

The mystical beauty of our nervous system’s ability to explore and learn new motor behavior is nicely demonstrated by how newborns and toddlers develop new motor skills. Through extensive periods of “oops” and “wow” learning, the nervous system has learned to control the sensitivities of how different muscles work together in affecting movement at various joints. This learning process starts before birth and continues throughout life. Unfortunately, impairment of the neuromuscular system, whether from injury or disease, may result in a disability of motor performance. Therefore, studying neuromuscular control is eminently important, not only from a scientific point of view to gain better insight into the mysteries of how the nervous system learns and controls movements, but also in studying restoration of movement after injury or disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altrock, von C. (1995). Fuzzy logic and neuro-fuzzy applications explained. Prentice Hall, Englewoods Cliffs, New Jersey.

    Google Scholar 

  • Barto, AG (1991). Connectionist learning for control. In Neural Networks for Control. Miller, W.T., Sutton, R.S., and Werbos, P.J. (eds.), pp. 5–58. The MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Barto, A.G. (1994). Reinforcement learning control. Curr. Opin. Neurobiol., 4:888–893.

    Article  PubMed  CAS  Google Scholar 

  • Barto, A.G., Bradtke, S.J., and Singh, S.P. (1995). Learning to act using real-time dynamic programming. Artif. Intell., 72:81–138.

    Article  Google Scholar 

  • Berenji, H.R. and Khedkar, P. (1992). Learning and tuning fuzzy logic controllers through reinforcements. IEEE Trans. Neural Networks.

    Google Scholar 

  • Bezdek, J.C. (1993). A review of probabilistic, fuzzy, and neural models for pattern recognition. J. Intell. Fuzzy Sys., 1:1–25.

    Google Scholar 

  • Bezdek, J.C. and Pal, S.K. (1992). Fuzzy models for pattern recognition. IEEE Press, New York, New York.

    Google Scholar 

  • Chen, J.J.J., Shiavi, R., and Zhang, L.Q. (1992). A quantitative and qualitative description of electromyographic linear envelopes for synergy analysis. IEEE Trans. Biomed. Eng., 39(19):1–18.

    Google Scholar 

  • Gioftsos, G. and Grieve, D.W. (1995). The use of neural networks to recognize patterns of human movement. Clin. Biomechan., 10(4):179–183.

    Article  Google Scholar 

  • Graupe, D. (1995). Artificial neural network control of FES in paraplegics for patient responsive ambulation. IEEE Trans. Biomed. Eng., 42(7):699–707.

    Article  PubMed  CAS  Google Scholar 

  • Hecht-Nielsen, R. (1991). Neurocomputing. Addison-Wesley, Reading Massachusetts.

    Google Scholar 

  • Holzreiter, S.H. and Kohle, M.E. (1993). Assessment of gait patterns using neural networks. J. Biomech., 26(6):645–651.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, R., Koopman, B., Veltink, P., Huijing, P.A., Nene, A., van der Kooij, H., and Grootenboer, H. (1996). A simplified control strategy for postural coordination in human stance. Engineering Foundation Biomechanics and Neural Control of Movement IX. Mt. Sterling, Ohio.

    Google Scholar 

  • Jang, J.S.R. (1992). Self-learning fuzzy controllers based on temporal back propagation. IEEE Trans. Neural Networks, 3:714–723.

    Article  CAS  Google Scholar 

  • Jang, J.S.R. and Sun, C.T. (1995). Neuro-fuzzy modeling and control. Proceedings of the IEEE, 83:378–406.

    Article  Google Scholar 

  • Kawato, M. (1990). Computational schemes and neural network models for formation and control of multijoint trajectory. In Neural Networks for Control, Miller, T., Sutten, R.S., and Werbos, P.J. (eds.), pp. 197–228. The MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Kawato, M., Furukawa, K., and Suzuki, R. (1987). A hierarchical neural-network model for control and learning of voluntary movement. Biol Cybern., 57:169–185.

    Article  PubMed  CAS  Google Scholar 

  • Kawato, M., Maeda, Y., Uno, Y., and Suzuki, R. (1990). Trajectory formation of arm movement by cascade neural network model based on minimum torquechange criterion. Biol. Cybern., 62:275–288.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, N.E., Parker, P.A., and Scott, R.N. (1990). Myoelectric signal analysis using neural networks. IEEE Trans. Med. Biol., 61–64.

    Google Scholar 

  • Kosko, B. (1992). Neural networks and fuzzy systems. A dynamical systems approach to machnie intelligence. Prentice Hall, Englewoods Cliffs, New Jersey.

    Google Scholar 

  • Kosko, B. (1993). Fuzzy thinking. Hyperion, New York.

    Google Scholar 

  • Kubica, E.G., Wang, D., and Winter, D.A. (1995). Modelling balance and posture control mechanisms of the upper body using conventional and fuzzy techniques. Gait and Posture, 3(2):111.

    Article  Google Scholar 

  • Meier, W., Weber, R., and Zimmerman, H.J. (1994). Fuzzy data analysis—Methods and industrial applications In Fuzzy Sets and Systems 61. Negoita, C.V., Zadeh, L.A., and Zimmerman, H.J. (eds.), pp. 19–28. Elsevier, North Holland.

    Google Scholar 

  • O’Malley, M.J., Abel, M., and Damiano, D. (1995). Fuzzy clustering of temporal-distance and kinematic parameters for cerebral palsy children. Gait and Posture, 3(2):92.

    Article  Google Scholar 

  • Schalkoff, R. (1992). Pattern recognition: syntactical, structural, and neural approaches. John Wiley & Sons, New York, New York.

    Google Scholar 

  • Sepulveda, F., Wells, D.M., and Vaughan, C.L. (1993). A neural network representation of electromyography and joint dynamics in human gait. J. Biomech., 26(2):101–109.

    Article  PubMed  CAS  Google Scholar 

  • Tucker, C.A. (1996). Artificial neural network approaches to synergy analysis of electromyographic data. In Engineering Foundation Conference: Biomechanics and Neural Control of Movement IX. Winters, J. and Crago, P. (eds.), Mt. Sterling, Ohio.

    Google Scholar 

  • Tucker, C.A., Yack, H.J., and White, S.C. (1994). A neural network approach to synergy analysis of electromyographic data. In Proceedings of the Tenth Congress of the International Society of Electrophysiology and Kinesiology. Charleston, South Carolina.

    Google Scholar 

  • Wada, Y. and Kawato, M. (1993). A neural network model for arm trajectory formation using forward and inverse dynamics models. Neural Networks, 6:919–932.

    Article  Google Scholar 

  • Werbos, P.J. (1991). A menu of designs for reinforcement learning over time. In Neural Networks for Control. Miller, W.T., Sutton, R.S., and Werbos, P.J. (eds.), pp. 67–95. MIT Press, Cambridge, MA.

    Google Scholar 

  • Zadeh, L. (1965). Fuzzy sets. Infor. Control, 8:338–353.

    Article  Google Scholar 

  • Zadeh, L. (1994). Fuzzy logic, neural networks and soft computing. Comm. Assoc. Computing Machinery, 3:77–84.

    Google Scholar 

  • Zadeh, L. (1996). Fuzzy logic—computing with words. IEEE Trans. Fuzzy Sys., 4:103–111.

    Article  Google Scholar 

  • Zhang, L.Q. and Shiavi, R. (1991). Clustering analysis and pattern discrimination of EMG linear envelopes. IEEE-BME, 38(8):777–784.

    Article  CAS  Google Scholar 

  • Zurada, J.M. (1992). An introduction to artificial neural systems. West Publishing Co., St. Paul, Minnesota.

    Google Scholar 

References

  • Smith, C.U.M. (1989). Elements of molecular neurobiology. John Wiley and Sons, New York.

    Google Scholar 

  • Tomovic, R., Popovic, D., and Stein, R.B. (1995). Non-analytical methods for motor control. World Scientific, Singapore.

    Book  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Jacobs, R., Tucker, C.A., Tomovic, R. (2000). Soft Computing Techniques for Evaluation and Control of Human Performance. In: Winters, J.M., Crago, P.E. (eds) Biomechanics and Neural Control of Posture and Movement. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2104-3_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2104-3_41

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7415-5

  • Online ISBN: 978-1-4612-2104-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics