Skip to main content

How Much Coordination Can be Obtained without Representing Time?

  • Chapter

Abstract

It is a commonplace that to produce even the simplest natural behaviors, the central nervous system must generate complex patterns of motor commands. From the standpoint of control theory, a motor command is a way to achieve a desired goal. In many cases, motor goals may be formulated as movements, that is as temporal sequences of positions to be assumed by a limb or by a limb’s endpoint. From the standpoint of information processing, a motor command is a way to encode a desired behavior. Thus, a task such as “grab the cup on the table” may be represented by one of the possible command patterns that our nervous system sets up for its execution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bizzi, E., Accornero, N., Chapple, W., and Hogan, N. (1984). Posture control and trajectory formation during arm movement. J. Neurosci., 4:2738–2744.

    PubMed  CAS  Google Scholar 

  • Bizzi, E., Hogan, N., Mussa-Ivaldi, F.A., and Giszter, S.F. (1992). Does the nervous system use equilibrium-point control to guide single and multiple joint movements? Behav. Brain Sci., 15:603–613.

    Google Scholar 

  • Delatizky, J. (1982). Final Position Control in Simulated Planar Horizontal Arm Movements. PhD thesis, M.I.T. Department of Electrical Engineering.

    Google Scholar 

  • Feldman, A.G. (1986). Once more on the equilibrium-point hypothesis (gamma model) for motor control. J. Motor Behav., 18:17–54.

    CAS  Google Scholar 

  • Flash, T. (1987). The control of hand equilibrium trajectories in multi-joint arm movements. Biol. Cybern., 57:257–274.

    Article  PubMed  CAS  Google Scholar 

  • Giszter, S.F., Mussa-Ivaldi, F.A., and Bizzi, E. (1993). Convergent force fields organized in the frog’s spinal cord. J. Neurosci., 13:467–491.

    PubMed  CAS  Google Scholar 

  • Hatsopoulos, N.G. (1994). Is a virtual trajectory necessary in reaching movements? Biol. Cybern., 70:541–551.

    Article  PubMed  CAS  Google Scholar 

  • Hocherman, S., Bizzi, E., Hogan, N., and Mussa-Ivaldi, F.A (1986). Target acquisition and maintenance in two joint arm movements. In Sensorimotor Plasticity, Theoretical and Clinical Aspects. Schmidt, R.S. and Jeannerod, M. (eds.). Editions INSERM, Paris.

    Google Scholar 

  • Hogan, N. (1984). An organizing principle for a class of voluntary movements. J. Neurosci., 4:2745–2754.

    PubMed  CAS  Google Scholar 

  • Hogan, N. (1985). Impedance control: an approach to manipulation: Parts i, ii, iii. ASME J. Dynamic Sys., Measurement and Control, 107:1–24.

    Article  Google Scholar 

  • Kalaska, J.F., Cohen, D.A.D., Hyde, M.L., and Prud’homme, M.A.. (1989). A comparison of movement direction-related versus load direction-related activity in primate motor cortex, using a two-dimensional reaching task. J. Neurosci., 9:2080–2102.

    PubMed  CAS  Google Scholar 

  • Kawato, M., Maeda, Y., Uno, Y. and Suzuki, R. (1990). Trajectory formation of arm movement by cascade neural network model based on minimum torque-change criterion. Biol. Cybern., 62:275–288.

    Article  PubMed  CAS  Google Scholar 

  • Miller, L.E. and Houk, J.C. (1995). Motor coordinates in primate red nucleus: preferential relation to muscle activation versus kinematic variables. J. Physiol., 488:533–548.

    PubMed  CAS  Google Scholar 

  • Morasso, P. (1981). Spatial control of arm movements. Exp. Brain Res., 42:223– 227.

    Article  PubMed  CAS  Google Scholar 

  • Mussa-Ivaldi, F.A. (1992). From basis functions to basis fields: using vector primitives to capture vector patterns. Biol. Cybern., 67:479–489.

    Article  PubMed  CAS  Google Scholar 

  • Mussa-Ivaldi, F A. and Bizzi, E. (1997). Learning Newtonian mechanics. In Self-Organization, Computational Maps and Motor Control. Morasso, P. and Sanguined, V. (eds.), Elsevier, Amsterdam pp. 191–238.

    Chapter  Google Scholar 

  • Mussa-Ivaldi, F.A. and Giszter, S.F., (1992). Vector field approximation: a computational paradigm for motor control and learning. Biol. Cybern., 67:491–500.

    Article  PubMed  CAS  Google Scholar 

  • Mussa-Ivaldi, F.A., Giszter, S.F. and Bizzi, E. (1994). Linear combinations of primitives in vertebrate motor control. Proc. Natl. Acad. Sci. USA, 91:7534–7538.

    Article  PubMed  CAS  Google Scholar 

  • Mussa-Ivaldi, F.A., Hogan, N., and Bizzi, E. (1985). Neural, mechanical and geometrical factors subserving arm posture in humans. J. Neurosci., 5:2732–2743.

    PubMed  CAS  Google Scholar 

  • D.A. Robinson. (1970). Oculomotor unit behavior in the monkey. J. Neurophysiol., 33:393–403.

    PubMed  CAS  Google Scholar 

  • Shadmehr, R, Mussa-Ivaldi, F.A., and Bizzi, E. (1993). Postural force fields of the human arm and their role in generating multi-joint movements. J. Neurosci., 13:45–62.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Mussa-Ivaldi, F.A. (2000). How Much Coordination Can be Obtained without Representing Time?. In: Winters, J.M., Crago, P.E. (eds) Biomechanics and Neural Control of Posture and Movement. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2104-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2104-3_25

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7415-5

  • Online ISBN: 978-1-4612-2104-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics