Skip to main content

Estrogen Receptor-mediated Genomic Instability in the Syrian Hamster Kidney: A Critical Event in Hormonal Oncogenesis

  • Conference paper

Abstract

Perhaps one of the most unique early hormonal events in estrogen (E) oncogenesis is the elicitation of genomic instability as a consequence of estrogen receptor (ER-α)-mediated cell proliferation. The focus of the studies presented herein is to provide evidence for this contention, and for a multi-stage sequence of events leading to tumor development, employing the Syrian hamster E-induced and -dependent renal neoplasm model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kirkman H (1959) Estrogen-induced tumors of the kidney in Syrian hamsters. J Natl Cancer Inst Monogr 1:1–59.

    CAS  Google Scholar 

  2. Coe JE, Cieplak W, Hadlow WJ et al. (1997) Female protein, amyloidosis, and hormonal carcinogenesis in Turkish hamster: Differences from Syrian hamster. Am J Physiol 273:R934–941.

    PubMed  CAS  Google Scholar 

  3. Li JJ, Hou X, Banerjee, SK et al. (1999) Overexpression and amplification of c-myc in the Syrian hamster kidney during estrogen carcinogenesis: A probable critical role in neoplastic transformation. Cancer Res 59:2340–2346.

    PubMed  CAS  Google Scholar 

  4. Gonzalez A, Oberley TD, Li JJ (1989) Morphological and immunohistochemical studies of the estrogen-induced Syrian hamster renal tumor: Probable cell os origin. Cancer Res 49:1020–1028).

    PubMed  CAS  Google Scholar 

  5. Oberley TD, Gonzalez A, Lauchner et al. (1991) Characterization of early lesions in estrogen-induced renal tumors in the Syrian hamster. Cancer Res 51:1922–1929.

    PubMed  CAS  Google Scholar 

  6. Li JJ, Talley, DJ, Li S A et al. (1974) An estrogen binding protein in the renal cytosol of the intact, castrated, and estrogenized golden hamsters. Endocrinol 95:1134–1141.

    Article  CAS  Google Scholar 

  7. Li JJ, Talley DJ, Li SA et al. (1976) Receptor characteristics of specific estrogen binding in the renal adenocarcinoma of the golden hamster. Cancer Res 36:1127–1132.

    PubMed  CAS  Google Scholar 

  8. Li J J, Li SA, Cuthbertson (1979) Nuclear retention of all steroid hormone receptor classes in the hamster renal carcinoma. Cancer Res 39:2647–2651.

    PubMed  CAS  Google Scholar 

  9. Li JJ, Li SA (1984) Estrogen-induced tumorigenesis in the Syrian hamster: Roles for hormonal and carcinogenic activities. Arch Toxicol 55:110–118.

    Article  PubMed  CAS  Google Scholar 

  10. Li JJ, Li SA, Oberley TD et al. (1995) Carcinogenic activities of various steroidal and nonsteroidal estrogens in the hamster kidney: Relation to hormonal activity and cell proliferation. Cancer Res 55:4347–4351.

    PubMed  CAS  Google Scholar 

  11. Li JJ, Gonzalez A, Banerjee S et al. (1993) Estrogen carcinogenesis in the hamster kidney: Role of cytotoxicity and cell proliferation. Environ Health Perspect 101(suppl 5):259–264.

    Article  PubMed  CAS  Google Scholar 

  12. Peiro G, Lerma E, Climent MA et al. (1997) Prognostic value of S-phase fraction in lymph node-negative breast cancer by image and flow cytometric analysis. Mod Pathol 10:216–222.

    PubMed  CAS  Google Scholar 

  13. Alanen KA, Lintu M, Joensuu H (1997) Image cytometry of breast carcinomas that are DNA diploid by flow cytometry. Time to revisit the concept of DNA diploidy? Anal Quant Cyto Histol 20:178–186.

    Google Scholar 

  14. Spyratos F, Briffod M (1997) DNA ploidy and S-phase fraction by image and flow cytometry in breast cancer fine-needle cytopunctures. Mol Pathol 10(6):556–563.

    CAS  Google Scholar 

  15. Hou X, Li J J, Chen WB et al. (1996) Estrogen-induced protooncogene and suppressor gene expression in the hamster kidney: Significance for estrogen carcinogenesis. Cancer Res 56:2616–2620.

    PubMed  CAS  Google Scholar 

  16. Felsher DW, Bishop M (1999) Transient excess of MYC activity can elicit genomic instability and tumorigenesis. Proc Natl Acad Sci USA 96:3940–3944.

    Article  PubMed  CAS  Google Scholar 

  17. Yin XY, Grove L, Datta NS et al. (1999) c-myc overexpression and p53 loss cooperate to promote genomic instability. Oncogene 18:1177–1184.

    Article  PubMed  CAS  Google Scholar 

  18. MarhinWW, Chen S, Facchini LM et al. (1997) Myc represses the growth arrest gene gadd45. Oncogene 14:2825–2834.

    Article  PubMed  CAS  Google Scholar 

  19. Lengauer G, Kinzler KW, Vogelstein B (1997) Genetic instability in colorectal cancers. Nature 386:623–627.

    Article  PubMed  CAS  Google Scholar 

  20. Paulovich AG, Toczyski DP, Hartwell LH (1997) When checkpoints fail. Cell 88:315–321.

    Article  PubMed  CAS  Google Scholar 

  21. Liao DJ, Hou X, Li SA et al. (2000) Elevation of p27kip, altered cyclins and cdks activities, and aberrant E2F1 expression in nascent and frank estrogen-induced renal neoplasia in the Syrian hamster. Carcinogenesis, in press.

    Google Scholar 

  22. Keyomarsi K, Pardee AB (1993) Redundant cyclin overexpression and gene amplification in breast cancer cells. Proc Natl Acad Sci USA 90:1112–1116.

    Article  PubMed  CAS  Google Scholar 

  23. Keyomarsi K, O’Leary N, Molnar G et al. (1994) Cyclin E, a potential prognostic marker for breast cancer. Cancer Res 34:380–385.

    Google Scholar 

  24. Li SA, Xue Y, Xie Q et al. (1994) Serum and tissue levels of estradiol during estrogen-induced renal tumorigenesis in the Syrian hamster. J Steroid Biochem Molec Biol. 48:283–286.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Li, J.J., Weroha, S.J., Cansler, M., Li, S.A. (2001). Estrogen Receptor-mediated Genomic Instability in the Syrian Hamster Kidney: A Critical Event in Hormonal Oncogenesis. In: Li, J.J., Li, S.A., Daling, J.R. (eds) Hormonal Carcinogenesis III. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2092-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2092-3_14

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7411-7

  • Online ISBN: 978-1-4612-2092-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics