Skip to main content

Indicator Dilution Methods

  • Conference paper
Book cover Quality of the Body Cell Mass

Part of the book series: Serono Symposia USA ((SERONOSYMP))

  • 128 Accesses

Abstract

It is surprising how few components comprise the bulk of human body composition at the elemental and molecular levels. At the elemental level, nearly 97% of body mass is accounted for by the mass of just four elements: oxygen (61%), carbon (23%), hydrogen (10%), and nitrogen (3%) (Wang 1992). Even the remaining 3% is nearly all accounted for when the masses of calcium, phosphorus, sodium, potassium, and chlorine are included. At the molecular level, three broad categories of molecules account for 92% of body mass (Wang 1995). These are water (57%), triglycerides (17%), and proteins (17%). Another 7% can be broadly classified as mineral, leaving only 2% of body mass uncategorized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brodie BB, Brand E, Lehsin S. The use of bromide as a measure of extracellular fluid. J Biol Chem 1939; 130: 555–63.

    CAS  Google Scholar 

  • Corsa L, Olney JM, Steenburg RW, Ball MR, Moore FD. The measurement of exchangeable potassium in man by isotope dilution. J Clin Invest 1950; 29: 180.

    Article  Google Scholar 

  • Culebras JM, Moore FD. Total body water and the exchangeable hydrogen. I. Theoretical calculation of non-aqueous exchangeable hydrogen in man. Am J Physiol 1977; 232: R5459.

    Google Scholar 

  • Denne SC, Patel D, Kalhan SC. Total body water measurement in normal and diabetic pregnancy: evidence for maternal and amniotic fluid equilibrium. Biol Neonate 1990; 57: 284–91.

    Article  PubMed  CAS  Google Scholar 

  • Edelman IS, Olney JM, James AH, Brooks L, Moore FD. Body composition: studies in the human being by the dilution principle. Science, 1952; 115: 447–54.

    Article  PubMed  CAS  Google Scholar 

  • Edelman IS, Leibman J. Anatomy of body water and electrolytes. Am J Med 1959; 27: 256–77.

    Article  PubMed  CAS  Google Scholar 

  • Faller IL, Petty D, Last JH, Pascale LR, Bond EE. A comparison of the deuterium oxide and antipyrine dilution methods for measuring total body water in normal and hydropic human subjects. J Lab Clin Med 1955; 45: 748–58.

    PubMed  CAS  Google Scholar 

  • Flear CTG, Singh CM. Hyponatraemia and sick cells. Br J Anaesth 1973; 45: 976–94.

    Article  PubMed  CAS  Google Scholar 

  • Forbes GB. Methods for determining composition of the human body. With a note on the effect of diet on body composition. Pediatrics 1962; 29: 477–94.

    PubMed  CAS  Google Scholar 

  • Gamble JL Jr, Robertson JS, Hannigan CA, Foster CG, Farr LE. Chloride, bromide, sodium, and sucrose spaces in man. J Clin Invest 1953; 32: 483–9.

    Article  PubMed  CAS  Google Scholar 

  • Gibbs JW. On the equilibrium of heterogeneous substances. Trans Conn Acad Arts Sci 1976; 3: 108.

    Google Scholar 

  • Haggarty P, McGaw BA, Fuller MF, Christie SL, Wong WW. Water hydrogen incorporation into body fat in pigs: effect on double/triple-labeled water method. Am J Physiol 1991; 260: R627–34.

    PubMed  CAS  Google Scholar 

  • Haussinger D. The Wretlind Lecture. Regulation of metabolism by changes in cellular hydration. Clin Nutr 1995; 14: 4–12.

    Article  Google Scholar 

  • Hellerstein S, Kaiser C, Darrow DD, Darrow DC. The distribution of bromide and chloride in the body. J Clin Invest 1960; 3: 282–7.

    Article  Google Scholar 

  • Herbst CA Jr. Simultaneous distribution rate and dilution volume of bromide-82 and thiocyanate in body fluid overload. Ann Surg 1974; 179: 200–8.

    Article  PubMed  Google Scholar 

  • Hurst WW, Schemm FR, Vogel WC. Simultaneous determination of total body water by antipyrine and deuterium oxide; evaluation of the methods on edematous subjects. J Lab Clin Med 1952; 39: 36–40.

    PubMed  CAS  Google Scholar 

  • Leth A, Binder C. The distribution volume of 82Br as a measurement of the extracellular fluid volume in normal persons. Scand J Clin Lab Invest 1970; 25: 291–97.

    Article  PubMed  CAS  Google Scholar 

  • Loeppky JA, Myhre LG, Venters MD, Luft UC. Total body water and lean body mass estimated by ethanol dilution. J Appl Physiol 1977; 42: 803–8.

    PubMed  CAS  Google Scholar 

  • McCullough AJ, Mullen KD, Kalahan SC. Measurements of total body and extracellular water in cirrhotic patients with and without ascites. Hepatology 1991; 14: 1102–11.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell AD, Steele NC. Comparison of urea space, deuterium oxide space and body composition in growing pigs. Growth 1987; 51: 118–31.

    PubMed  CAS  Google Scholar 

  • Nicholson JP, Zilva JF. Estimation of extracellular fluid volume using radiobromine. J Clin Invest 1960; 19: 391–98.

    CAS  Google Scholar 

  • O’Meara MP, Birkenfeld LW, Gotch FA, Edelman IS. The equilibration of radiosodium (Na24), radiopotassium (K42), and deuterium oxide D2O in hydropic human subjects. J Clin Invest 1957; 36: 784–92.

    Article  PubMed  Google Scholar 

  • Overman BR. Permeability alterations in disease. J Lab Clin Med 1946; 31: 1170–73.

    PubMed  CAS  Google Scholar 

  • Pierson RN Jr, Price DC, Wang J, Jain RK. Extracellular water measurements: Organ tracer kinetics of bromide and sucrose in rats and man. Am J Physiol 1978; 235: F254–64.

    PubMed  Google Scholar 

  • Pierson RN Jr, Wang J, Colt E, Neumann R Body composition measurements in normal man: the potassium, sodium, sulfate, and tritium spaces in 58 adults. J Chron Dis 1982; 35: 419–28.

    Article  PubMed  CAS  Google Scholar 

  • Schloerb PR, Friis-Hansen BJ, Edelman IS, Solomon AK, Moore FD. The measurement of total body water in the human subject by deuterium oxide. J Clin Invest 1950; 29: 1296–310.

    Article  PubMed  CAS  Google Scholar 

  • Schober O, Lehr L, Hundeshagen H. Bromide space, total body water, and sick cell syndrome. Eur J Nucl Med 1982; 7: 14–5.

    Article  PubMed  CAS  Google Scholar 

  • Schoeller DA. Hydrometry. In: Human body composition: methods and findings. Roche AF, ed. Columbus, OH: Human Kinetics, 1986: 25–44.

    Google Scholar 

  • Schoeller DA. Isotope dilution methods. In: Obesity. Bjorntop P, Brodoff BN, eds. Philadelphia: J.B. Lippincott 1992: 80–88.

    Google Scholar 

  • Schoeller DA, Dietz W, van Santen E, Klein PD. Validation of saliva sampling for total body water determination by H2 180dilution. Am J Clin Nutr 1982; 35: 591–94.

    PubMed  CAS  Google Scholar 

  • Schoeller DA, Kushner RF, Taylor P, Dietz WH, Bandini L. Measurement of total body water: isotope dilution techniques. In: Body-composition assessments in youth and adults. Roche AF, ed. Report of the sixth Ross conference on medical research. Columbus, OH: Report of the sixth Ross conference on medical research, 1985: 24–29.

    Google Scholar 

  • Schoeller DA, Jones PJH. Measurement of total body water by isotope dilution: a unified approach to calculations. In: In vivo body composition studies. Ellis KJ, Yasumura S, Morgan WD, eds. London: Institute of Physical Sciences in Medicine 1987: 131–37.

    Google Scholar 

  • Scholer JF, Code CF. Rate of absorption of water from stomach and small bowel of human beings. Am J Physiol 1954; 27: 565–77.

    CAS  Google Scholar 

  • Soberman R, Brodie BB, Levy BB, Axelrod J, Hollander V, Steele JM. The use of antipyrine in the measurement to total body water in man. J Biol Chem 1949; 171: 31–42.

    Google Scholar 

  • Vaisman N, Pencharz PB, Koren G, Johnson JK. Comparison of oral and intravenous administration of sodium bromide for extracellular water measurements. Am J Clin Nutr 1987; 46: 1–4.

    PubMed  CAS  Google Scholar 

  • Wang ZM, Pierson RN Jr, Heymsfield SB. The five-level model: a new approach to reorganizing body-composition research. Am J Clin Nutr 1992; 56: 19–28.

    PubMed  CAS  Google Scholar 

  • Wang ZM, Heshka S, Pierson RN Jr, Heymsfield SB. Systematic organization of body-composition methodology: an overview with emphasis on component-based methods. Am J Clin Nutr 1995; 61: 457–65.

    PubMed  CAS  Google Scholar 

  • Weir EG, Hastings AB. The distribution of bromide and chloride in tissues and body fluids. J Biol Chem 1939; 129: 547–58.

    CAS  Google Scholar 

  • Wong WW, Cochran WJ, Klish WJ, Smith ED, Lee LS, Klein PD. In vivo isotope-fractionation factors and the measurement of deuterium-and oxygen-18-dilution spaces from plasma, urine, saliva, respiratory water vapor, and carbon dioxide. Am J Clin Nutr 1988; 47: 1–6.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Schoeller, D.A. (2000). Indicator Dilution Methods. In: Pierson, R.N. (eds) Quality of the Body Cell Mass. Serono Symposia USA. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2090-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2090-9_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7410-0

  • Online ISBN: 978-1-4612-2090-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics