Convolutions of Vector Fields-III: Amenability and Spectral Properties

  • M. M. Rao
Part of the Trends in Mathematics book series (TM)

Abstract

Although this is a continuation of the previous two parts, it may be studied independently of my earlier work (1980, 2001) and the necessary results will be briefly restated. An extended early section motivates the problems from a finite state space to the general case via a discussion of random walks, or equivalently convolution operators and their structural analysis. This naturally leads to a study of the latter operators on certain function spaces and function algebras. It also shows a need to consider the (algebraic) structure of the state space of random walks, namely an analysis of the underlying locally compact groups and the dependence on the spectral analysis of the associated convolution operators on function spaces built on them. In the nonabelian group case (of the state space of the walks) the analysis is intimately related to amenability of the group, which is the range or state space of the random walk.

Keywords

Hull Convolution Tral Pier Verse 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bade, W. G., P. C. Curtis, Jr., and H.G. Dales, Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc. (3) 55 (1987), 359–377.MathSciNetMATHGoogle Scholar
  2. [2]
    Berg, C., and J. P. R. Christensen, On the relation between amenability of locally compact groups and norms of convolution operators, Math. Ann. 208 (1974), 149–153.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    Beurling, A., Construction and analysis of some convolution operators, Ann. Inst. Fourier Grenoble (2) 14 (1964), 1–32.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Bonsall, F. F., and J. Duncan, Complete Normed Algebras, Springer, New York, 1973.MATHGoogle Scholar
  5. [5]
    Day, M. M., Convolutions, means, and spectra, Illinois J. Math. 8 (1964), 100–111.MathSciNetMATHGoogle Scholar
  6. [6]
    Dieudonné, J., Sur le produit de composition-II, J. Math. Pures Appl. 39 (1960), 275–292.MathSciNetMATHGoogle Scholar
  7. [7]
    Feller, W., Introduction to Probability Theory and its Applications-I, 3rd Ed., Wiley and Sons, New York, 1968.MATHGoogle Scholar
  8. [8]
    Furstenberg, H., Boundary theory and stochastic processes on homogeneous spaces, in: Harmonic Analysis on Homogeneous Spaces, Proc. Symp. Pure Math. 26 (1973), Amer. Math. Soc., 193–229.Google Scholar
  9. [9]
    Greenleaf, F P., Invariant Means on Topological Groups, Van Nostrand-Reinhold Co., New York, 1969.MATHGoogle Scholar
  10. [10]
    Hewitt, E., and K. A. Ross, Abstract Harmonic Analysis-I, Springer, New York, 1963.Google Scholar
  11. [11]
    Johnson, B. E., Cohomology in Banach algebras, Memoirs of Amer. Math. Soc. 127 (1972), 1–96.Google Scholar
  12. [12]
    Kesten, H., Symmetric random walks on groups, Trans. Amer. Math. Soc. 92 (1959a), 336–354.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    Kesten, H., Full Banach mean values on countable groups, Math. Scand. 7 (1959b), 146–156.MathSciNetMATHGoogle Scholar
  14. [14]
    Leptin, H., On locally compact groups with invariant means, Proc. Amer. Math. Soc. 19(1968), 489–494.MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    Paterson, A. L. T., Amenability, Amer. Math. Soc. Surveys, Providence, RI, 1988.MATHGoogle Scholar
  16. [16]
    Pier, J.- P., Amenable Locally Compact Groups, Wiley-Interscience, New York, 1984.Google Scholar
  17. [17]
    Rao, M. M., Convolutions of vector fields-I, Math. Zeits. 174 (1980) 63–79, and II (2001), Nonlinear Anal. 47, 3599–3615.MATHCrossRefGoogle Scholar
  18. [18]
    Rao, M. M., Probability Theory with Applications, Academic Press, New York, 1984.MATHGoogle Scholar
  19. [19]
    Rao, M. M., Measure Theory and Integration, Wiley-Interscience, New York, 1987.MATHGoogle Scholar
  20. [20]
    Rao, M. M., Stochastic Processes: General Theory, Kluwer Academic, Boston, 1995.MATHGoogle Scholar
  21. [21]
    Rao, M. M., and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker Inc., New York, 1991.MATHGoogle Scholar
  22. [22]
    Rao, M. M., and Z. D. Ren, Applications of Orlicz Spaces, Marcel Dekker, Inc., New York, 2002.MATHGoogle Scholar
  23. [23]
    Revuz, D., Markov Chains, (Revised Edition), North-Holland, Amsterdam, The Netherlands, 1984.MATHGoogle Scholar
  24. [24]
    Reiter, H., Classical Harmonic Analysis and Locally Compact Groups, Oxford University Press, Oxford, UK, 1968.MATHGoogle Scholar
  25. [25]
    Runde, V., Lectures on Amenability, Lect. Netes in Math. 1774, Springer, New York, 2002.MATHGoogle Scholar
  26. [26]
    Skantharajah, M., Amenable hypergroups, Illinois J. Math. 36 (1992), 15–46.MathSciNetMATHGoogle Scholar
  27. [27]
    Spitzer, E, Principles of Random Walk, D. Van Nostrand Co., New York, 1964.MATHGoogle Scholar
  28. [28]
    Truitt, C. C. B., An extension to Orlicz spaces of theorems of M. M. Day on “Convolutions, means, and spectra,” Ph.D. thesis, University of Illinois, Urbana, IL, 1967.Google Scholar

Copyright information

© Birkhäuser Boston 2004

Authors and Affiliations

  • M. M. Rao
    • 1
  1. 1.Department of MathematicsUniversity of California, RiversideRiversideUSA

Personalised recommendations